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Suppose Q ≪ P . P and Q have a common dominating measure, say µ, e.g. P+Q. Let p and
q be the densities of P and Q with respect to µ, respectively. The Kullback-Leibler divergence
of P from Q is defined as K(P ;Q) = Kµ(p; q) = EP log(p/q) = P log(p/q) =

!
log(p/q)pdµ,

provided the integral exist. As p/q is almost surely independent of the choice of µ, the definition
of the Kullback-Leibler divergence is independent of µ. Recall that the Hellinger distance is

defined by
"!

(
√
p−√

q)2dµ.

Theorem 1. The Kullback-Leibler divergence is positive definite and not necessarily symmetric
nor transitive. Furthermore it is bounded below by the squared Hellinger distance.

In order to prove that the KL divergence is neither symmetric nor transitive, we need to
give a counterexample for which we use the Poisson distribution.

Example 2. Let P = Poisson(λ) and Q = Poisson(µ). Then

K(P ;Q) =
∞#

k=0

e−λλ
k

k!
[µ− λ+ k log(λ/µ)]

= µ− λ+ λ log(λ/µ).

Proof of theorem 1. Note that

$
(
√
p−√

q)2dµ

=2− 2

$ √
pqdµ

=2

$
(1−

%
q/p)pdµ.

Note that log x ≤ x− 1 for all x > 0, so 1− x ≤ log(x−1) for all x > 0 and we can write

$
(
√
p−√

q)2dµ

≤ 2

$
log(

%
p/q)pdµ

=

$
log(p/q)pdµ.

So the KL-divergence is lower bounded by the Hellinger distance, and is therefore in particular
positive definite.
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Note that for P = Poisson(1), Q = Poisson(2), K(P,Q) ≈ 0.31, but K(Q,P ) ≈ 0.39, so K
is not symmetric. If we define R = Poisson(3), we have

max {K(P,Q) +K(R,Q), K(P,Q) +K(Q,R), K(Q,P ) +K(R,Q), K(Q,P ) +K(Q,R)}
≈ 0.60 < 0.90 ≈ min {K(P,R), K(R,P )} .

So the triangle inequality does not hold.

The KL paradox

In variational inference (VI), one approximates the posterior P by a simpler function Q. One
ought to minimise K(P,Q), however, as this is intractable, one minimises K(Q,P ) instead. So
one might wonder, that when K(P,Q) < K(P,R), is K(Q,P ) < K(R,P ) as well? That is not
the case, as the following example shows.

Example 3 (Example with K(P,Q) < K(P,R), but K(Q,P ) > K(R,P )). Take P =
Poisson(3), Q = Poisson(6), and R = Poisson(1). Then K(P,Q) ≈ 0.92 < 1.30 ≈ K(P,R),
but K(Q,P ) ≈ 1.16 > 0.90 ≈ K(R,P ).

Remark 4. This example shows that when R is a better approximation of P than Q with respect
to K( · , P ), it might be a worse approximation with respect to K(P, · ).

In VI one searches for a measure Q in a family of probability measures Q that minimises
K(Q;P ), where P is the posterior. However (McCulloch, 1989) K(P ;Q) measures how good Q
approximates P . Choosing a Q that makes K(Q;P ) smaller, might make K(P ;Q) larger. So
this is an argument against the use of VI. The following two examples illustrate this further.

Example 1

Consider Pm = Poisson(1/m) and Qn = Poisson(e−n), with n ∈ {m, . . . , 2m}. Consider ap-
proximating Pm with Qn,m ≤ n ≤ 2m. Then using that f(x) = xe−x is decreasing for x > 1,
and 1

x
log x is decreasing for x > e, we see that

0 ≤ K(Qn, Pm) =
1

m
− e−n + e−n log

&
e−n

1/m

'

=
1

m
− e−n + e−n logm− ne−n

≤ 1

m
− e−2m + e−m logm− 2me−2m → 0, as m → ∞

But

K(Pn, Qn) =e−n − 1

m
+

1

m
log

&
1/m

e−n

'

=e−n − 1

m
− 1

m
logm+

n

m
.

So

e−2m − 1

m
+ 1− 1

m
logm ≤K(Pn, Qn) ≤ e−m − 1

m
+ 2− 1

2m
log(2m).

So for m ≥ 3, and n ∈ {m, . . . , 2m},

0.3 ≤ K(Pm, Qn) ≤ 2.05.

So Q = argmin {Qn : K(Qn, Pn),m ≤ n ≤ 2m} satisfies K(Q,Pm) → 0 as m → ∞, but
K(Pm, Q) ≥ 0.3 for all m.
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Example 2

Consider P = N+(0, σ2) and Q = Exp(λ)
Then P has density

fσ2(x) =
2

σ
√
2π

exp

&
− x2

2σ2

'
, x ≥ 0,

and Q has density
gλ(x) = λe−λx.

Note that P has mean 2√
2π
σ and Q has mean 1

λ
.

Then

K(P,Q) =

$ ∞

0

&
log 2− log σ − 1

2
log(2π)− x2

2σ2
− log λ+ λx

'
fσ2(x)dx

= log 2− log σ − 1

2
log(2π)− 1

2
− log λ+

2σλ√
2π

=C1 − log(σλ) +
2σλ√
2π

.

and

K(Q,P ) =

$ ∞

0

&
log λ− λx− log 2 + log σ +

1

2
log(2π) +

x2

2σ2

'
gλ(x)dx

= log λ− 1− log 2 + log σ +
1

2
log(2π) +

1

σ2λ2

=C2 + log(σλ) +
1

σ2λ2
.

Suppose P is fixed, and first we optimise K(P,Q) over λ ∈ (0,∞). Then K(P,Q) is

minimised for λ =
√
2π
2σ

and K(Q,P ) is minimised for λ =
√
2
σ
. So the estimates differ by a

factor
√
π/2 ≈ 0.89.
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