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1 Binomial distribution

The binomial distribution with parameters n and p takes values in {0, . . . , n}. It is the distri-
bution of n independent experiments with probability of succes p. So when X1, . . . , Xn are zero
or one with probability p, then

S =
n

k=1

Xk (1)

is binomially distributed with parameters n and p.
Probability mass function:


n

k


pk(1− p)n−k,

Difficult to calculate for n large. However, can be well approximated with Stirling’s formula,
or approximated with the Poisson distribution.

Mean np, variance np(1− p).
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1.1 Sums

When X ∼ binom(n, p) and Y ∼ binom(m, p), and X and Y are independent, then we see from
eq. (1) that X + Y ∼ binom(m+ n, p). In general with p ∕= q, the sum is not Binomial.

1.2 History

Blaise Pascal 1623–1662, France, for p = 1/2.
General p first studied by Jacob Bernoulli 1655-1705, Switzerland.
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Figure 1: left: Jakob Bernoulli, right: Blaise Pascal

1.3 An application in population genetics

If the frequency of a certain genotype is p, then the probability of seeing k individuals in a
sample of n individuals is binomially distributed with parameters n and p.

1.4 Estimators for p

Maximum likelihood estimator p̂ = X
n
.

The beta distribution is conjugate with the binomial distribution. If

p ∼ beta(α, β),

X | p ∼ binom(n, p),

then

p | X ∼ beta(α +X, β + n−X)

In particular, the posterior mean is
X + α

n+ α + β
,

so for instance with beta(1, 1) = uniform([0, 1]), then the Bayesian estimator is

p̂Bayes =
X + 1

n+ 2

Benefit:
0 < p̂Bayes < 1,

because p = 0 or 1 might be unreasonable. Drawback: it is a (slightly) biased estimator.
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1.5 Confidence intervals

1.5.1 Normal approximation interval / Wald interval

p̂±


p̂(1−p̂)
n

Do not use, really bad.

1.5.2 Wilson score interval

Also based on normal approximation, but more cleaver. Is reasonably good.

1.5.3 Clopper-Pearson interval

LetX be binomially distributed with parameters n and p, of which p is unknown. The maximum
likelihood estimator and moment estimators are p̂ = X/n. The exact confidence interval or
Clopper-Pearson1 interval set for p̂ is given by [pL, pU ], where

n

k=X


n

k


pkL(1− pL)

n−k = α/2

and
X

k=0


n

k


pkU(1− pU)

n−k = α/2

Then

Pp(p < pL) =Pp


n

k=X


n

k


pk(1− p)n−k < α/2


≤ α/2,

and

Pp(p > pU) =Pp


X

k=0


n

k


pk(1− p)n−k < α/2


≤ α/2.

So Pp(p /∈ [pL, pU ]) = Pp(p < pL) + P (p > pU) ≤ α/2 + α/2 = α.

1.6 Bayesian credible intervals

Note that under the beta prior,

p | X ∼ beta(α +X, β + n−X).

Let qα/2 and q1−α/2 be the α/2 and 1−α/2 quantiles of the beta(α+X, β+n−X) distribution.
Then [qα/2, q1−α/2] is a 1 − α credible interval. For α = β = 1/2, this is the Jeffrey confidence
interval.

1.7 Approximations

1.7.1 Poisson approximation

When n → ∞ and p = pn is so that npn → λ ∈ (0,∞), then binom(n, p)⇝Poisson(λ). This
is often used in population genetics when the number of individuals is large and the exact
binomial distributions are approximated by Poisson distributions.

So when X ∼ binom(n, p), is the probability distribution of having X time succes in n
experiments, when you have on average np times succes, and when Y ∼ Poisson(λ) is the
distribution of having Y times succes in infinity times experiments when you have on average
λ times success. So in a sense the Poisson distribution is an binomial distribution with n = ∞.

1Named after the inventors C.J. Clopper and E.S. Pearson
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1.7.2 Normal distribution

By the central limit theorem
X − np

np(1− p)
⇝N(0, 1).

But is a bad approximation according to the literature, unless you have exceptionally large N .

2 Poisson distribution

The Poisson distribution (named after the French mathematician Siméon Denis Poisson, 1781
– 1840) is a distribution on all non-negative integers. Has one parameter λ.

The probability mass function is

p(k) =
e−λ

k!
λk, k = 0, 1, 2, . . .

Is based on the Taylor expansion

eλ =
∞

k=0

λk

k!
,

so
∞

k=0

p(k) = 1.

Mean: λ, variance λ.
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2.1 Relationship with the binomial distribution

The sum of two independent Poisson distributions is again Poisson with parameter the sum of
the parameters.

P (X1 | X1 +X2) ∼ binom


X1 +X2,

λ1

λ1 + λ2



2.2 History

It was first introduced by Abraham de Moivre in 1711 (French but fled at young age to England
because of Huguenots persecution), publised in a book by Siméon Denis Poisson (1781–1840).

Figure 2: left: Abraham de moivre, right: Siméon Dennis Poisson

2.3 Application in population genetics

In the Wright-Fisher model, you have 2N individuals in each population. Each individual picks
his parent randomly. So, each parent can be choosen by 2N children with probability 1/(2N).
We have 2N · 1

2N
= 1, so when N is large, the number of children is approximately Poisson

distributed with parameter 1.

2.4 Sums

If Xi ∼ Poisson(λi), are independent, then

X1 + . . .+Xn ∼ Poisson (λ1 + . . .+ λn) .
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2.5 Estimation

If you have X1, . . . , Xn random variables that are Poisson distributed with unknown parameter
λ, then

λ̂lik =
1

n

n

k=1

Xk

is the maximum likelihood estimator.

2.6 Confidence interval

If you have on observation X, then

1

2
χ2(α/2, 2X) ≤ λ ≤ 1

2
χ2(1− α/2, 2X + 2),

is a confidence interval, where χ2(p, f) is the quantile function of the Chi squared distribution
with f degrees of freedom.

If you have n observations X1, . . . , Xn ∼ Poisson(λ), then X1 + . . .+Xn ∼ Poisson(nλ). So

1

2
χ2(α/2, 2(X1 + . . .+Xn)) ≤ nλ ≤ 1

2
χ2(1− α/2, 2(X1 + . . .+Xn) + 2),

so
1

2n
χ2(α/2, 2(X1 + . . .+Xn)) ≤ λ ≤ 1

2n
χ2(1− α/2, 2(X1 + . . .+Xn) + 2).

2.7 Bayesian inference

The Poisson distribution is conjugate with the gamma distribution.

λ ∼ gamma(α, β) shape parameter α rate parameter β,

X1, . . . , Xn | λ ∼Poisson(λ),

λ | X1, . . . , Xn ∼ gamma


α +

n

k=1

Xk, β + n


.

So Bayesian estimator (posterior mean)

α +
n

k=1 Xk

β + n
,

credible interval: 
γα/2,α+n

k=1 Xk,β+n, γ1−α/2,α+
n

k=1 Xk,β+n


,

where γp,α,β is the p-th quantile of the gamma distribution with parameters α and β.

3 Geometric distribution

Parameter p. The number of failures before the first time succes, takes values in 0, 1, . . .. It
has pdf

p(k) = (1− p)kp.

So suppose X1, X2, . . . are experiments with probability of success p, then the smallest k so
that Xk+1 = 1 and Xa = . . . = Xk = 0 is geometric distributed with parameter p.
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If Y ∼ geometric(p), then Y ≥ k means that the first k experiments fail. This happens
with probability (1− p)k. So P (Y ≥ k) = (1− p)k. So

P (Y = a+ b | Y ≥ a) =
(1− p)a+bp

(1− p)a
= (1− p)bp = P (Y = b).

So the geometric distribution is memoryless.
Mean 1−p

p
variance 1−p

p2
.

Figure 3: Geometric distribution

3.1 Application in population genetics

In the Wright-Fisher model, with population size 2N , if you have two individuals, then they
have the same parent with probability 1/(2N). They have probability of having the same
grandparent with probability 1/(2N). They have probability of having latest common ancestor
in the k + 1 generation with probability


1− 1

2N

k
1

2N
.

Which is the geometric distribution.
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3.2 Relation with the exponential distribution

Lemma 1. Let Yn ∼ geometric(pn), so that npn → λ. Let Zn = Yn

n
and let Z ∼ Exp(λ), then

Zn ⇝Z, as n → ∞.

Proof. Let x > 0. Then

P (Zn ≤ x) =P (Yn ≤ ⌊nx⌋)
=1− P (Yn > ⌊nx⌋)
=1− (1− pn)

⌊nx⌋+1

Note that 1− pn → 1, as n → ∞ and


1− pnn

n

nx

→ e−λx, as n → ∞.

So P (Zn ≤ x) converges to P (Z ≤ x). So Zn converges weakly to Z.

3.3 Maximum likelihood estimator
n

n+
n

k=1 Xk

.

3.4 Bayesian inference

The geometric distribution is conjugate with the beta distribution.

p ∼ beta(α, β),

X1, . . . , Xn | p ∼ geometric(p),

p | X1, . . . , Xn ∼ beta


α + n, β +

n

k=1

Xk


.

So Bayesian estimator for p,

α + n

α + β + n+
n

k=1 Xk

,

95% credible interval 
q0.025,α+n,β+

n
k=1 Xk

, q0.975,α+n,β+
n

k=1 Xk


,

where qp,α,β is the p quantile for the beta distribution with parameters.

4 Exponential distribution

Continuous distribution on [0,∞) with density f(x) = λe−λx. Then P (Y ≥ x) = e−λx.
Mean 1

λ
, variance 1

λ2 .
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Figure 4: Exponential

4.1 Relation with the geometric distribution

Let X ∼ Exp(λ). Then for k ∈ N0,

P (⌊X⌋ = k) =

 k+1

k

λe−λxdx

= −e−λx
k+1

x=k

=e−λk − e−λ(k+1)

=e−λk(1− e−λ)

=

1− (1− e−λ)

k
(1− e−λ).

So ⌊X⌋ is geometric distributed with parameter p = 1− e−λ.

4.2 Memorylessness of the exponential distirbution

Let Y be exponential distributed with parameter λ. Then

P (Y ≥ a+ b | Y ≥ a) =
e−λ(a+b)

e−λa
= e−λb = P (Y ≥ b).

So the exponential distribution is memoryless.
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4.3 The minimum of two exponentials is exponential

Lemma 2. Let X ∼ Exp(λ) and Y ∼ Exp(µ) be independent. Then X ∧ Y := min(X, Y ) ∼
Exp(λ+ µ).

Proof. Let Z = X ∧ Y . Let x ≥ 0. Then

P (Z ≥ x) =P (X ≥ x, Y ≥ x)

=P (X ≥ x)P (Y ≥ x)

=e−λxe−µx

=e−(λ+µ)x.

So Z ∼ Exp(λ+ µ).

A Difference between credible intervals and confidence

intervals

A.1 Confidence intervals

A confidence interval is an interval I = I(X) (the interval depends on the data) of parameters
(more generally a confidence set, which is a set of parameters) so that for all parameters p in
your paramater space

Pp(p ∈ I) ≥ 1− α

(typically 1− α = 0.95).
So you have data X which is generated according to an unknown parameter p, and with

X you construct I = I(X) so that Pp(p ∈ I(X)). So you are never sure whether the true
parameter is in your data set, only that when you do the experiment 20 times, you expect that
in 19 cases the true parameter is in the interval.

Assuming that there is a true parameter p is called the frequentist school of statistics. It
was developed in the early 20th century and is more recent than Bayesian statistics. It was
developed by Ronald Fisher, Jerzy Neyman, and Egon Pearson.

A.2 Credible intervals

A credible interval / Bayesian confidence set (more generally credible set) is an interval with
1− α posterior probability. So

p ∼P

X | p ∼Pp.

So P is your believe about the reality, and then you see data and learn from it to update your
believe to P | X.

A credible interval is an interval I so that

P (I | X) ≥ 1− α.

So I is a 1− α adequate description of reality.
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