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Abstract

In this document I review some properties of the limit inferior and the limit superior:
additivity properties, its relation the the limit and inequalities.

1 The limit inferior and limit superior

Definition 1. Let (an)n≥0 be a sequence of real numbers. The limit inferior of
an is lim infn→∞ an = limN→∞ infn≥N an and the limit superior of (an)n≥0 is
lim supn→∞ an = limN→∞ supn≥N an.

Remark 2. As ((infn≥N an)N≥1 is an increasing sequence, and ((supn≥N an)N≥1 is a decreasing
sequence, by the monotone convergence theorem, the limits limN→∞ infn≥N an and
limN→∞ supn≥N an exist, but might be ±∞. Moreover, as infn≥N an ≤ supn≥N an for all
N ∈ N, it follows that

lim inf
n→∞

an ≤ lim sup
n→∞

an.

Remark 3. As supn≥N an = − infn≥N(−an), we have that lim supn→∞ = − lim infn→∞(−an).
This is an often convenient tool to translate lemma’s about the limit inferior into lemma’s about
the limit superior, or vice versa.

2 Properties of the limit inferior

Lemma 4. Let (an)
∞
n=1 and (bn)

∞
n=1 sequences of real numbers. If lim infn→∞(an− bn) ≥ 0 then

lim infn→∞ an ≥ lim infn→∞ bn.

Proof. Suppose lim infn→∞(an − bn) ≥ 0, but for some ε > 0,
lim infn→∞ an < −ε+ lim infn→∞ bn. Let δ > 0. There is an N0 so that for N ≥ N0,

inf
n≥N

an < −ε+ δ + inf
n≥N

bn.

So for all k ≥ N ,

inf
n≥N

an < −ε+ δ + bk

So there is an n ≥ N , so that for all k ≥ N ,

an < −ε+ 2δ + bk.
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In particular

an − bn < −ε+ 2δ.

So

inf
k≥N

(ak − bk) ≤ an − bn < −ε+ 2δ.

Taking δ ↓ 0, gives
lim inf
n→∞

(an − bn) ≤ −ε.

Contradiction. So lim infn→∞ an ≥ −ε + lim infn→∞ bn. As this holds for every ε > 0, we have
that lim infn→∞ an ≥ lim infn→∞ bn.

The reverse is not true.

Lemma 5. There are sequences (an)n≥0, (bn)n≥0 of real numbers so that lim infn→∞ an ≥
lim infn→∞ bn, but lim infn→∞(an − bn) ∕≥ 0.

Example 6. Consider (an)n≥0 with an = 0 for all n. Define bn = n except when n is prime,
in which case bn = 0.

Then lim infn→∞ an = 0, lim infn→∞ bn = 0, but an − bn is equal to −n except, when n is
prime, in which case it is equal to 0. Thus lim infn→∞(an − bn) = −∞, but lim infn→∞ an =
0 ≥ 0 = lim infn→∞ bn.

The limit inferior is also not additive.

Lemma 7. There are sequences (an)n≥0 and (bn)n≥0 of (positive) real numbers so that
lim infn→∞(an + bn) ∕= lim infn→∞ an + lim infn→∞ bn.
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Example 8. Define (an)
∞
n=1 to be a sequence so that an = 1 when n is even and an = 2 when n

is odd. Define (bn)
∞
n=1 to be a sequence so that bn = 2 when n is even and bn = 1 when n is odd.

Then an + bn = 3 for all n. So lim infn→∞ an = lim infn bn = 1, and lim infn→∞(an + bn) = 3,
so

lim inf
n→∞

(an + bn) = 3 ∕= 2 = lim inf
n→∞

an + lim inf
n→∞

bn.

However lim inf is superadditive:

Lemma 9. Let (an)n≥1, (bn)
∞
n=1 be sequences of real numbers. Then

lim inf
n→∞

(an + bn) ≥ lim inf
n→∞

an + lim inf
n→∞

bn.

Proof. Let N ∈ N. For all k ≥ N ,

ak ≥ inf
n≥N

an and bk ≥ inf
n→∞

bn.

So for all k ≥ N ,
ak + bk ≥ inf

n≥N
an + inf

n≥N
bn.

So
inf
n≥N

(an + bn) ≥ inf
n≥N

an + inf
n≥N

bn.

So
lim inf
n→∞

(an + bn) ≥ lim inf
n→∞

an + lim inf
n→∞

bn.

Note that lemma 4 is now a corollary of lemma 9.

Second proof of lemma 4. It follows from lemma 9 that

lim inf
n→∞

an = lim inf
n→∞

(bn + (an − bn))

≥ lim inf
n→∞

bn + lim inf
n→∞

(an − bn)

≥ lim inf
n→∞

bn,

by our assumption that lim infn→∞(an − bn) ≥ 0.

Lemma 10. Let (an)
∞
n=1 be a sequence of real numbers and let (bn)

∞
n=1 be a sequence of real

numbers that converges to b ∈ R. Then

lim inf
n→∞

(an + bn) = b+ lim inf
n→∞

an.

Proof. First consider the case that lim infn→∞ an = ∞ or−∞, in which case infn≥N an converges
to ∞ or −∞ as well, respectively. Note that (bn)

∞
n=1 is bounded, say |bn| ≤ B for all n. So for

all N ∈ N, −B+infn≥N an ≤ infn≥N(an+ bn) ≤ B+infn≥N an, hence infn≥N(an+ bn) converges
to ∞ or −∞ as well.

Now consider the case that a := lim infn→∞ an ∈ R. Let ε > 0. Then there is an N0 ∈ N,
so that for N ≥ N0 and n ≥ N , |infn≥N an − a| < ε/4 and |bn − b| < ε/2. So for all N ≥ N0

and for all k ≥ N , we have

a− ε/4 < inf
n≥N

an ≤ ak
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and there is a MN,ε ≥ N , so that

!!!! infn≥N
an − aMN,ε

!!!! < ε/4.

So

!!aMN,ε
− a

!! < ε/2.

It follows that for all k ≥ N ,

a+ b− 3

4
ε < ak + bk,

and

aMN,ε
+ bMN,ε

≤ a+ b+ ε.

It follows that for all N ≥ N0,

a+ b− 3

4
ε ≤ inf

n≥N
(an + bn) ≤ a+ b+ ε.

Taking the limit ε ↓ 0 gives

lim inf
n→∞

(an + bn) = a+ b.

2.1 Statements about the limit superior

We will now translate our statements for the limit inferior to statements about the limit supe-
rior, with the use of remark 3.

The equivalent to lemma 4 is

Lemma 11. Let (an)
∞
n=1 and (bn)

∞
n=1 be sequences of real numbers. If lim supn→∞(an−bn) ≤ 0,

then lim supn→∞ an ≤ lim supn→∞ bn.

Proof. Note that

lim sup
n→∞

(an − bn) = − lim inf
n→∞

(bn − an) ≤ 0,

So lim infn→∞(bn − an) = lim infn→∞((−an)− (−bn)) ≥ 0. Hence, according to lemma 4,

lim inf
n→∞

(−an) ≥ lim inf
n→∞

(−bn).

So

− lim inf
n→∞

(−an) ≤ − lim inf
n→∞

(−bn).

So

lim sup
n→∞

an ≤ lim sup
n→∞

bn.
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The equivalent to lemma 5 is

Lemma 12. There are sequences (an)n≥0, (bn)n≥0 of real numbers so that lim supn→∞ an ≤
lim supn→∞ bn, but lim supn→∞(an − bn) ∕≤ 0.

Proof. According to example 6 there are sequences (an)n≥0 and (bn)n≥0 so that lim infn→∞ an ≥
lim infn→∞ bn, but lim infn→∞(an − bn) < 0. So

− lim sup
n→∞

(−an) ≥ − lim sup
n→∞

(−bn),

that is

lim sup
n→∞

(−an) ≤ lim sup
n→∞

(−bn)

but

− lim sup
n→∞

((−an)− (−bn)) < 0,

so

lim sup
n→∞

((−an)− (−bn)) > 0.

So (−an)
∞
n=1 and (−bn)

∞
n=1 are the required sequences.

Similar to the limit inferior (lemma 7), the limit superior is also not additive.

Lemma 13. There are sequences (an)n≥0 and (bn)n≥0 of (positive) real numbers so that
lim supn→∞(an + bn) ∕= lim supn→∞ an + lim supn→∞ bn.

This is proven by the following counterexample, which has the same sequences as example 8

Example 14. Let (an)
∞
n=1 and (bn)

∞
n=1 be as in lemma 7, so an = 1 when n is even and an = 2

when n is odd and bn = 2 when n is even and bn = 1 when n is odd. Then an + bn = 3 for all
n. So lim supn→∞ an = lim supn bn = 2, and lim supn→∞(an + bn) = 3, so

lim sup
n→∞

(an + bn) = 3 ∕= 4 = lim sup
n→∞

an + lim sup
n→∞

bn.

As the limit inferior is superadditive (lemma 9), the limit superior is subadditive:

Lemma 15. Let (an)
∞
n=1, (bn)

∞
n=1 be sequences of real numbers. Then

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.

Proof. Let (an)
∞
n=1, (bn)

∞
n=1 be sequences of real numbers. By lemma 9,

lim sup
n→∞

(an + bn) =− lim inf
n→∞

(−an +−bn)

≤− lim inf
n→∞

(−an) +− lim inf
n→∞

(−bn)

= lim sup
n→∞

an + lim sup
n→∞

bn.

The equivalent of lemma 10 is
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Lemma 16. Let (an)
∞
n=1 be a sequence of real numbers and let (bn)

∞
n=1 be a sequence of real

numbers that converges to b ∈ R. Then

lim sup
n→∞

(an + bn) = b+ lim sup
n→∞

an.

Proof. Note that (−bn)
∞
n=1 converges to −b, so by lemma 10,

lim sup
n→∞

(an + bn) =− lim inf
n→∞

(−an − bn)

=−
"
−b+ lim inf

n→∞
(−an)

#

=b+ lim sup
n→∞

an.

Lemma 17. Let (an)
∞
n=1 be a sequence of real numbers. Then (an)

∞
n=1 converges in [−∞,∞] if

and only if lim infn→∞ an = lim supn→∞ an. Moreover, when (an)
∞
n=1 converges, then

lim
n→∞

an = lim inf
n→∞

an = lim sup
n→∞

an ∈ [−∞,∞].

Proof. First suppose (an)
∞
n=1 converges to ∞. Then for every M > 0 there is an N0 ∈ N so that

for all N ≥ N0 and for all n ≥ N , an ≥ M . So supn≥N an ≥ M and infn≥N an ≥ M . Taking
M ↑ ∞ gives

lim inf
n→∞

an = lim sup
n→∞

an = lim
n→∞

an = ∞.

Now suppose that (an)
∞
n=1 converges to −∞. Then for every M > 0 there is an N0 ∈ N so that

for N ≥ N0 and for all n ≥ N , an ≤ −M . So infn≥N an ≤ −M and supn≥N an ≤ −M . Taking
the limit M ↑ ∞ gives

lim inf
n→∞

an = lim sup
n→∞

an = lim
n→∞

an = −∞.

Now suppose (an)
∞
n=1 converges to a ∈ R. Let ε > 0. Then there is an N0 ∈ N so that for

N ≥ N0 and for n ≥ N , |an − a| < ε. Thus infn≥N an ≥ a− ε and supn≥N an ≤ a + ε. Taking
the limit ε ↓ 0 gives

lim inf
n→∞

an = lim sup
n→∞

an = lim
n→∞

an = a.

Conversely, suppose lim infn→∞ an = lim supn→∞ an = ∞. In particular infn≥N an diverges
to infinity. So for every M > 0 there is some N ∈ N so that for n ≥ N , an ≥ M . So

lim
n→∞

an = ∞.

So
lim inf
n→∞

an = lim sup
n→∞

an = lim
n→∞

an = ∞.

Now suppose lim infn→∞ an = lim supn→∞ an = −∞. In particular supn≥N an diverges to minus
infinity. So for every M > 0 there is some N ∈ N so that for n ≥ N , an ≤ −M . So
limn→∞ an = −∞. So

lim inf
n→∞

an = lim sup
n→∞

an = lim
n→∞

an = −∞.

Now suppose lim infn→∞ an = lim supn→∞ an = a ∈ R. Let ε > 0. Then there is an N0 so that
for all N ≥ N0,

a− ε ≤ inf
n≥N

an ≤ sup
n≥N

an ≤ a+ ε.
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So for all n ≥ N0,
a− ε ≤ an ≤ a+ ε.

Taking ε ↓ 0 gives limn→∞ an = a. So

lim inf
n→∞

an = lim sup
n→∞

an = lim
n→∞

an = a.
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