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Abstract

In this document I review some properties of the limit inferior and the limit superior:
additivity properties, its relation the the limit and inequalities.

1 The limit inferior and limit superior

Definition 1. Let (a,)n>0 be a sequence of real numbers.  The limit inferior of
a, is liminf, ,a, = limy,yinf,>ya, and the limit superior of (a,),>0 1is
lim sup,, ., @p = liMy_00 SUP,> G-

Remark 2. As ((inf,>n a,)n>1 is an increasing sequence, and ((sup,,sy @,)n>1 is a decreasing
sequence, by the monotone convergence theorem, the limits limpy_ inf,>ya, and
limy o0 SUP,,>y @n €xist, but might be £oo. Moreover, as inf,>ya, < sup,-ya, for all
N €N, it follows that -

liminf a,, < limsup a,,.
n—0oo n—00

Remark 3. As sup,>ya, = —inf,>n(—a,), we have that limsup, ,,, = —liminf, ,(—a,).
This is an often convenient tool to translate lemma’s about the limit inferior into lemma’s about
the limit superior, or vice versa.

2 Properties of the limit inferior

Lemma 4. Let (a,)32, and (b,)5, sequences of real numbers. If liminf, . (a, —0b,) > 0 then
liminf,,_,. a, > liminf,_,, b,.

Proof. Suppose liminf, ,.(a, — by) > 0, but for some ¢ > 0,
liminf, . a, < —¢ + liminf,_, b,. Let 6 > 0. There is an Ny so that for N > N,

inf a, < —e+ 6 + inf b,.
n>N n>N
So for all £ > N,
inf a, < —e+4+ 6+ by
n>N

So there is an n > N, so that for all &k > N,

an<—€+25+bk



In particular
a, — b, < —e + 26.

So

nf (ar, — by) < a, — b, < —e+ 24.
k>N

Taking 6 | 0, gives
liminf(a, —b,) < —¢.

n—oo

Contradiction. So liminf,, ,. a, > —e + liminf,,_,, b,. As this holds for every ¢ > 0, we have
that liminf,_,. a, > liminf,_,. b,. O

The reverse is not true.

Lemma 5. There are sequences (an)n>0, (bn)n>0 of real numbers so that liminf, . a, >
liminf, o b,, but liminf, ,(a, —b,) 2 0.

Example 6. Consider (a,)n,>0 with a, = 0 for all n. Define b, = n except when n is prime,
in which case b, = 0.
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Then liminf, .. a, = 0, liminf,_,.. b, = 0, but a, — b, is equal to —n except, when n 1is
prime, in which case it is equal to 0. Thus liminf, ,(a, — b,) = —o0, but liminf, . a, =
0 >0 =liminf,,_, b,.

The limit inferior is also not additive.

Lemma 7. There are sequences (an)n>0 and (b,)n>0 of (positive) real numbers so that
liminf, . (a, + b,) # liminf,,_, a, + liminf, . b,.



Example 8. Define (a,)22, to be a sequence so that a,, = 1 when n is even and a,, = 2 when n
is odd. Define (b,)22, to be a sequence so that b, = 2 when n is even and b, = 1 when n is odd.
Then a, + b, = 3 for all n. So liminf, . a, = liminf, b, = 1, and liminf, . (a, + b,) = 3,
50

liminf(a, + b,) = 3 # 2 = liminf a,, + liminf b,,.

n—oo n—oo n—oo

However liminf is superadditive:

Lemma 9. Let (ay)n>1, (bn)52, be sequences of real numbers. Then

liminf(a,, + b,) > liminf a,, + lim inf b,,.

n—oo n—oo n—oo

Proof. Let N € N. Forall k> N,

ar > inf a,, and by > inf b,.
n>N n—oo

So for all £ > N,
ar + bk Z inf Ay + inf bn
n>N

n>N
So
inf (a, + b,) > inf a, + inf b,.
n>N n>N n>N
So
liminf(a, + b,) > liminf a,, + lim inf b,,.
n—00 n—00 n—00
[
Note that lemma 4 is now a corollary of lemma 9.
Second proof of lemma 4. It follows from lemma 9 that
hﬂgf ay, = h}ggolf(bn + (an — b))
> lim inf b,, 4+ lim inf(a,, — b,,)
n—oo n—oo
> liminf b,
n—oo
by our assumption that liminf, . (a, —b,) > 0. H

Lemma 10. Let (a,), be a sequence of real numbers and let (b,)32, be a sequence of real
numbers that converges to b € R. Then

liminf(a, + b,) = b+ liminf a,,.
n—oo n—0o0

Proof. First consider the case that lim inf,,_,, a,, = 0o or —oo, in which case inf,,> 5 a,, converges
to 0o or —oo as well, respectively. Note that (b,,)°; is bounded, say |b,| < B for all n. So for
all N € N, —B+inf, >y a, < inf,>n(a,+b,) < B+inf, >y a,, hence inf,>x(a, +b,) converges
to 0o or —oo as well.

Now consider the case that a := liminf,,_,. a, € R. Let ¢ > 0. Then there is an Ny € N,
so that for N > Ny and n > N, |inf,>ya, —a| < €/4 and |b, — b| < /2. So for all N > Ny
and for all £ > N, we have

a—5/4<ni£1]fvan§ak



and there is a My, > N, so that

<e/4

inf a, —a
n>N n MN,&

So
lanry,. —a| <e/2.

It follows that for all £ > N,

3
a+b—Z€<ak+bk,

and
aMN’E + bMN,a S a + b + €.

It follows that for all N > N,
3
a+b—-¢< inf(a,+b,) <a+b+e.
4 n>N

Taking the limit € | 0 gives

liminf(a, + b,) = a + b.

n—oo

2.1 Statements about the limit superior

We will now translate our statements for the limit inferior to statements about the limit supe-
rior, with the use of remark 3.
The equivalent to lemma 4 is

Lemma 11. Let (a,)2, and (b,)22, be sequences of real numbers. If limsup,,_,.(a, —b,) <0,
then limsup,,_, . a, < limsup,,_, . by.

Proof. Note that

limsup(a, — b,) = —liminf(b, — a,) <0,

n—00 n—00

So liminf, o (b, — a,,) = liminf, . ((—a,) — (=b,)) > 0. Hence, according to lemma 4,

liminf(—a,) > liminf(—b,).

n—00 n—s00
So

- ligi(gf(—an) < - hgg.}f(_bn)'
So

limsup a,, < limsupb,.
n—oo n—oo



The equivalent to lemma 5 is

Lemma 12. There are sequences (an)n>0, (bn)n>0 of real numbers so that limsup,, . an
limsup,, ., by, but limsup,, ., (a, —b,) £ 0.

Proof. According to example 6 there are sequences (a,,)n>0 and (b, )n>o so that liminf,, . a, >
liminf, . b,, but liminf, ,.(a, — b,) < 0. So

—limsup(—a,) > — limsup(—b,),

n—oo n—oo
that is
lim sup(—a,) < lim sup(—b,)
n—oo n—oo
but
—limsup((—a,) — (—=b,)) <0,
n—oo
S0
lim sup((—a,) — (=b,)) > 0.
n—oo
So (—a,)22, and (—b,)2, are the required sequences. O

Similar to the limit inferior (lemma 7), the limit superior is also not additive.

Lemma 13. There are sequences (an)n>0 and (by)n>0 of (positive) real numbers so that
limsup,,_,.(a, + b,) # limsup,,_, ., a, + limsup,,_, . b,.

This is proven by the following counterexample, which has the same sequences as example 8

Example 14. Let (a,)2, and (b,)32, be as in lemma 7, so a, = 1 when n is even and a, = 2
when n 1s odd and b, = 2 when n is even and b, = 1 when n is odd. Then a, + b, = 3 for all
n. So limsup,, ., a, = limsup, b, = 2, and limsup,,_,.(a, + b,) = 3, so

limsup(a, + b,) = 3 # 4 = limsup a,, + lim sup b,.

n—oo n—oo n—oo

As the limit inferior is superadditive (lemma 9), the limit superior is subadditive:

Lemma 15. Let (a,)02, (bn)5, be sequences of real numbers. Then

limsup(a, + b,) < limsup a,, + lim sup b,.

n—oo n—oo n—oo

Proof. Let (a,)2, (b,)22, be sequences of real numbers. By lemma 9,

lim sup(a,, + b,) = — liminf(—a, + —b,)

n—00 n—00

< — liminf(—a,) + — liminf(—b,)

n—oo n—oo

= limsup a,, + lim sup b,,.
n—oo n—oo

The equivalent of lemma 10 is



Lemma 16. Let (a,)5, be a sequence of real numbers and let (b,)32, be a sequence of real
numbers that converges to b € R. Then

limsup(a, + b,) = b+ limsup a,,.

n—oo n—oo

Proof. Note that (—b,)22, converges to —b, so by lemma 10,

lim sup(a,, + b,) = — liminf(—a, — b,)

N—00 n—0o0
=— (—b + lim inf(—an)>
n—oo
=b + limsup a,,.

n—oo

O

Lemma 17. Let (a,)22, be a sequence of real numbers. Then (a,)?2, converges in [—oo, 0] if
and only if liminf,, an = limsup,, ., a,. Moreover, when (a,)>2, converges, then

lim a, = liminf a, = limsupa, € [—o00, 0.

n—oo n—oo n—oo
Proof. First suppose (a,)2 , converges to co. Then for every M > 0 there is an Ny € N so that
for all N > Ny and for all n > N, a,, > M. So sup,>ya, > M and inf,>ya, > M. Taking
M 1 oo gives

liminf a,, = limsupa,, = hm a, = 00.
n—0oo n—00

Now suppose that (a,)2, converges to —oco. Then for every M > 0 there is an Ny € N so that
for N > Ny and for all n > N, a, < —M. So inf,>x a, < —M and sup,,>y a, < —M. Taking
the limit M 1 oo gives

liminf a,, = limsup a,, = hm a, = —00.
n—oo n—00

Now suppose (a,)2, converges to a € R. Let ¢ > 0. Then there is an Ny € N so that for
N > Ny and for n > N, |a, — a|] < e. Thus inf,>x a, > a — € and sup,,~y a, < a + . Taking
the limit £ | 0 gives -
liminf a, = limsupa, = lim a, = a.
n—00 n—00 n—00
Conversely, suppose liminf,, ., a,, = limsup,,_,, @, = 0o. In particular inf, >y a,, diverges
to infinity. So for every M > 0 there is some N € N so that for n > N, a,, > M. So

lim a, = co.

n—oo
So
liminf a,, = limsup a,, = lim a, = .
n—oo n—oo n—oo
Now suppose liminf,_, a, = limsup,,_, . a, = —oo. In particular sup,,~ 5 @, diverges to minus

infinity. So for every M > 0 there is some N € N so that for n > N, a, < —M. So
lim,, 00 a, = —00. SO

liminf a,, = limsup a,, = lim a, = —oo.
n—oo n—oo n—oo
Now suppose liminf, . a, = limsup,_,. a, = a € R. Let € > 0. Then there is an Ny so that

for all N > Ny,

a—e< 1nf a, < supa, <a+e.
>N n>N



So for all n > Nj,
a—e<a, <a+e.

Taking ¢ | 0 gives lim,, o a, = a. So

liminf a, = limsupa, = lim a, = a.
n—oo n—oo n—oo



