The limit inferior and the limit superior

Jan van Waaij

October 29, 2021

Abstract

In this document I review some properties of the limit inferior and the limit superior: additivity properties, its relation the the limit and inequalities.

1 The limit inferior and limit superior

Definition 1. Let $\left(a_{n}\right)_{n \geq 0}$ be a sequence of real numbers. The limit inferior of a_{n} is $\liminf _{n \rightarrow \infty} a_{n}=\lim _{N \rightarrow \infty} \inf _{n \geq N} a_{n}$ and the limit superior of $\left(a_{n}\right)_{n \geq 0}$ is $\lim \sup _{n \rightarrow \infty} a_{n}=\lim _{N \rightarrow \infty} \sup _{n \geq N} a_{n}$.

Remark 2. As $\left(\left(\inf _{n \geq N} a_{n}\right)_{N \geq 1}\right.$ is an increasing sequence, and $\left(\left(\sup _{n \geq N} a_{n}\right)_{N \geq 1}\right.$ is a decreasing sequence, by the monotone convergence theorem, the limits $\lim _{N \rightarrow \infty} \inf _{n \geq N} a_{n}$ and $\lim _{N \rightarrow \infty} \sup _{n \geq N} a_{n}$ exist, but might be $\pm \infty$. Moreover, as $\inf _{n \geq N} a_{n} \leq \sup _{n \geq N} a_{n}$ for all $N \in \mathbb{N}$, it follows that

$$
\liminf _{n \rightarrow \infty} a_{n} \leq \limsup _{n \rightarrow \infty} a_{n} .
$$

Remark 3. As $\sup _{n \geq N} a_{n}=-\inf _{n \geq N}\left(-a_{n}\right)$, we have that $\limsup _{n \rightarrow \infty}=-\liminf \operatorname{inc}_{n \rightarrow \infty}\left(-a_{n}\right)$. This is an often convenient tool to translate lemma's about the limit inferior into lemma's about the limit superior, or vice versa.

2 Properties of the limit inferior

Lemma 4. Let $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ sequences of real numbers. If $\left.\lim _{\inf }^{n \rightarrow \infty}{ }^{(} a_{n}-b_{n}\right) \geq 0$ then $\liminf _{n \rightarrow \infty} a_{n} \geq \liminf _{n \rightarrow \infty} b_{n}$.

Proof. Suppose $\liminf _{n \rightarrow \infty}\left(a_{n}-b_{n}\right) \geq 0, \quad$ but for some $\varepsilon>0$, $\liminf _{n \rightarrow \infty} a_{n}<-\varepsilon+\liminf _{n \rightarrow \infty} b_{n}$. Let $\delta>0$. There is an N_{0} so that for $N \geq N_{0}$,

$$
\inf _{n \geq N} a_{n}<-\varepsilon+\delta+\inf _{n \geq N} b_{n} .
$$

So for all $k \geq N$,

$$
\inf _{n \geq N} a_{n}<-\varepsilon+\delta+b_{k}
$$

So there is an $n \geq N$, so that for all $k \geq N$,

$$
a_{n}<-\varepsilon+2 \delta+b_{k} .
$$

In particular

$$
a_{n}-b_{n}<-\varepsilon+2 \delta .
$$

So

$$
\inf _{k \geq N}\left(a_{k}-b_{k}\right) \leq a_{n}-b_{n}<-\varepsilon+2 \delta
$$

Taking $\delta \downarrow 0$, gives

$$
\liminf _{n \rightarrow \infty}\left(a_{n}-b_{n}\right) \leq-\varepsilon
$$

Contradiction. So $\liminf _{n \rightarrow \infty} a_{n} \geq-\varepsilon+\liminf _{n \rightarrow \infty} b_{n}$. As this holds for every $\varepsilon>0$, we have that $\liminf _{n \rightarrow \infty} a_{n} \geq \liminf _{n \rightarrow \infty} b_{n}$.

The reverse is not true.
Lemma 5. There are sequences $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0}$ of real numbers so that $\liminf _{n \rightarrow \infty} a_{n} \geq$ $\liminf { }_{n \rightarrow \infty} b_{n}$, but $\liminf _{n \rightarrow \infty}\left(a_{n}-b_{n}\right) \nsupseteq 0$.

Example 6. Consider $\left(a_{n}\right)_{n \geq 0}$ with $a_{n}=0$ for all n. Define $b_{n}=n$ except when n is prime, in which case $b_{n}=0$.

Then $\liminf _{n \rightarrow \infty} a_{n}=0, \liminf _{n \rightarrow \infty} b_{n}=0$, but $a_{n}-b_{n}$ is equal to $-n$ except, when n is prime, in which case it is equal to 0 . Thus $\liminf _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=-\infty$, but $\liminf _{n \rightarrow \infty} a_{n}=$ $0 \geq 0=\liminf _{n \rightarrow \infty} b_{n}$.

The limit inferior is also not additive.
Lemma 7. There are sequences $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ of (positive) real numbers so that $\liminf _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \neq \liminf _{n \rightarrow \infty} a_{n}+\lim \inf _{n \rightarrow \infty} b_{n}$.

Example 8. Define $\left(a_{n}\right)_{n=1}^{\infty}$ to be a sequence so that $a_{n}=1$ when n is even and $a_{n}=2$ when n is odd. Define $\left(b_{n}\right)_{n=1}^{\infty}$ to be a sequence so that $b_{n}=2$ when n is even and $b_{n}=1$ when n is odd. Then $a_{n}+b_{n}=3$ for all n. So $\liminf _{n \rightarrow \infty} a_{n}=\liminf _{n} b_{n}=1$, and $\liminf \inf _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=3$, so

$$
\liminf _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=3 \neq 2=\liminf _{n \rightarrow \infty} a_{n}+\liminf _{n \rightarrow \infty} b_{n}
$$

However lim inf is superadditive:
Lemma 9. Let $\left(a_{n}\right)_{n \geq 1},\left(b_{n}\right)_{n=1}^{\infty}$ be sequences of real numbers. Then

$$
\liminf _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \geq \liminf _{n \rightarrow \infty} a_{n}+\liminf _{n \rightarrow \infty} b_{n} .
$$

Proof. Let $N \in \mathbb{N}$. For all $k \geq N$,

$$
a_{k} \geq \inf _{n \geq N} a_{n} \quad \text { and } \quad b_{k} \geq \inf _{n \rightarrow \infty} b_{n} .
$$

So for all $k \geq N$,

$$
a_{k}+b_{k} \geq \inf _{n \geq N} a_{n}+\inf _{n \geq N} b_{n}
$$

So

$$
\inf _{n \geq N}\left(a_{n}+b_{n}\right) \geq \inf _{n \geq N} a_{n}+\inf _{n \geq N} b_{n}
$$

So

$$
\liminf _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \geq \liminf _{n \rightarrow \infty} a_{n}+\liminf _{n \rightarrow \infty} b_{n} .
$$

Note that lemma 4 is now a corollary of lemma 9 .
Second proof of lemma 4. It follows from lemma 9 that

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} a_{n} & =\liminf _{n \rightarrow \infty}\left(b_{n}+\left(a_{n}-b_{n}\right)\right) \\
& \geq \liminf _{n \rightarrow \infty} b_{n}+\liminf _{n \rightarrow \infty}\left(a_{n}-b_{n}\right) \\
& \geq \liminf _{n \rightarrow \infty} b_{n},
\end{aligned}
$$

by our assumption that $\liminf _{n \rightarrow \infty}\left(a_{n}-b_{n}\right) \geq 0$.
Lemma 10. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers and let $\left(b_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers that converges to $b \in \mathbb{R}$. Then

$$
\liminf _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=b+\liminf _{n \rightarrow \infty} a_{n}
$$

Proof. First consider the case that $\lim _{\inf }^{n \rightarrow \infty}{ }_{n}=\infty$ or $-\infty$, in which case $\inf _{n \geq N} a_{n}$ converges to ∞ or $-\infty$ as well, respectively. Note that $\left(b_{n}\right)_{n=1}^{\infty}$ is bounded, say $\left|b_{n}\right| \leq B$ for all n. So for all $N \in \mathbb{N},-B+\inf _{n \geq N} a_{n} \leq \inf _{n \geq N}\left(a_{n}+b_{n}\right) \leq B+\inf _{n \geq N} a_{n}$, hence $\inf _{n \geq N}\left(a_{n}+b_{n}\right)$ converges to ∞ or $-\infty$ as well.

Now consider the case that $a:=\liminf _{n \rightarrow \infty} a_{n} \in \mathbb{R}$. Let $\varepsilon>0$. Then there is an $N_{0} \in \mathbb{N}$, so that for $N \geq N_{0}$ and $n \geq N,\left|\inf _{n \geq N} a_{n}-a\right|<\varepsilon / 4$ and $\left|b_{n}-b\right|<\varepsilon / 2$. So for all $N \geq N_{0}$ and for all $k \geq N$, we have

$$
a-\varepsilon / 4<\inf _{n \geq N} a_{n} \leq a_{k}
$$

and there is a $M_{N, \varepsilon} \geq N$, so that

$$
\left|\inf _{n \geq N} a_{n}-a_{M_{N, \varepsilon}}\right|<\varepsilon / 4 .
$$

So

$$
\left|a_{M_{N, \varepsilon}}-a\right|<\varepsilon / 2 .
$$

It follows that for all $k \geq N$,

$$
a+b-\frac{3}{4} \varepsilon<a_{k}+b_{k},
$$

and

$$
a_{M_{N, \varepsilon}}+b_{M_{N, \varepsilon}} \leq a+b+\varepsilon .
$$

It follows that for all $N \geq N_{0}$,

$$
a+b-\frac{3}{4} \varepsilon \leq \inf _{n \geq N}\left(a_{n}+b_{n}\right) \leq a+b+\varepsilon
$$

Taking the limit $\varepsilon \downarrow 0$ gives

$$
\liminf _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=a+b
$$

2.1 Statements about the limit superior

We will now translate our statements for the limit inferior to statements about the limit superior, with the use of remark 3 .

The equivalent to lemma 4 is
Lemma 11. Let $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ be sequences of real numbers. If $\lim \sup _{n \rightarrow \infty}\left(a_{n}-b_{n}\right) \leq 0$, then $\lim \sup _{n \rightarrow \infty} a_{n} \leq \lim \sup _{n \rightarrow \infty} b_{n}$.

Proof. Note that

$$
\limsup _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=-\liminf _{n \rightarrow \infty}\left(b_{n}-a_{n}\right) \leq 0
$$

So $\lim \inf _{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=\liminf _{n \rightarrow \infty}\left(\left(-a_{n}\right)-\left(-b_{n}\right)\right) \geq 0$. Hence, according to lemma 4,

$$
\liminf _{n \rightarrow \infty}\left(-a_{n}\right) \geq \liminf _{n \rightarrow \infty}\left(-b_{n}\right) .
$$

So

$$
-\liminf _{n \rightarrow \infty}\left(-a_{n}\right) \leq-\liminf _{n \rightarrow \infty}\left(-b_{n}\right) .
$$

So

$$
\limsup _{n \rightarrow \infty} a_{n} \leq \limsup _{n \rightarrow \infty} b_{n} .
$$

The equivalent to lemma 5 is
Lemma 12. There are sequences $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0}$ of real numbers so that $\lim \sup _{n \rightarrow \infty} a_{n} \leq$ $\limsup { }_{n \rightarrow \infty} b_{n}$, but limsup $\operatorname{sum}_{n \rightarrow \infty}\left(a_{n}-b_{n}\right) \not \leq 0$.

Proof. According to example 6 there are sequences $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ so that $\liminf _{n \rightarrow \infty} a_{n} \geq$ $\liminf _{n \rightarrow \infty} b_{n}$, but $\liminf \operatorname{in}_{n \rightarrow \infty}\left(a_{n}-b_{n}\right)<0$. So

$$
-\limsup _{n \rightarrow \infty}\left(-a_{n}\right) \geq-\limsup _{n \rightarrow \infty}\left(-b_{n}\right)
$$

that is

$$
\limsup _{n \rightarrow \infty}\left(-a_{n}\right) \leq \limsup _{n \rightarrow \infty}\left(-b_{n}\right)
$$

but

$$
-\limsup _{n \rightarrow \infty}\left(\left(-a_{n}\right)-\left(-b_{n}\right)\right)<0,
$$

so

$$
\limsup _{n \rightarrow \infty}\left(\left(-a_{n}\right)-\left(-b_{n}\right)\right)>0
$$

So $\left(-a_{n}\right)_{n=1}^{\infty}$ and $\left(-b_{n}\right)_{n=1}^{\infty}$ are the required sequences.
Similar to the limit inferior (lemma 7), the limit superior is also not additive.
Lemma 13. There are sequences $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ of (positive) real numbers so that $\limsup \operatorname{sum}_{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \neq \lim \sup _{n \rightarrow \infty} a_{n}+\lim \sup _{n \rightarrow \infty} b_{n}$.

This is proven by the following counterexample, which has the same sequences as example 8

Example 14. Let $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ be as in lemma 7, so $a_{n}=1$ when n is even and $a_{n}=2$ when n is odd and $b_{n}=2$ when n is even and $b_{n}=1$ when n is odd. Then $a_{n}+b_{n}=3$ for all n. So $\lim \sup _{n \rightarrow \infty} a_{n}=\lim \sup _{n} b_{n}=2$, and $\lim \sup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=3$, so

$$
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=3 \neq 4=\limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n} .
$$

As the limit inferior is superadditive (lemma 9), the limit superior is subadditive:
Lemma 15. Let $\left(a_{n}\right)_{n=1}^{\infty},\left(b_{n}\right)_{n=1}^{\infty}$ be sequences of real numbers. Then

$$
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n} .
$$

Proof. Let $\left(a_{n}\right)_{n=1}^{\infty},\left(b_{n}\right)_{n=1}^{\infty}$ be sequences of real numbers. By lemma 9,

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) & =-\liminf _{n \rightarrow \infty}\left(-a_{n}+-b_{n}\right) \\
& \leq-\liminf _{n \rightarrow \infty}\left(-a_{n}\right)+-\liminf _{n \rightarrow \infty}\left(-b_{n}\right) \\
& =\limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n} .
\end{aligned}
$$

The equivalent of lemma 10 is

Lemma 16. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers and let $\left(b_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers that converges to $b \in \mathbb{R}$. Then

$$
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=b+\limsup _{n \rightarrow \infty} a_{n}
$$

Proof. Note that $\left(-b_{n}\right)_{n=1}^{\infty}$ converges to $-b$, so by lemma 10 ,

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) & =-\liminf _{n \rightarrow \infty}\left(-a_{n}-b_{n}\right) \\
& =-\left(-b+\liminf _{n \rightarrow \infty}\left(-a_{n}\right)\right) \\
& =b+\limsup _{n \rightarrow \infty} a_{n} .
\end{aligned}
$$

Lemma 17. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers. Then $\left(a_{n}\right)_{n=1}^{\infty}$ converges in $[-\infty, \infty]$ if and only if $\liminf _{n \rightarrow \infty} a_{n}=\lim \sup _{n \rightarrow \infty} a_{n}$. Moreover, when $\left(a_{n}\right)_{n=1}^{\infty}$ converges, then

$$
\lim _{n \rightarrow \infty} a_{n}=\liminf _{n \rightarrow \infty} a_{n}=\limsup _{n \rightarrow \infty} a_{n} \in[-\infty, \infty] .
$$

Proof. First suppose $\left(a_{n}\right)_{n=1}^{\infty}$ converges to ∞. Then for every $M>0$ there is an $N_{0} \in \mathbb{N}$ so that for all $N \geq N_{0}$ and for all $n \geq N, a_{n} \geq M$. So $\sup _{n \geq N} a_{n} \geq M$ and $\inf _{n \geq N} a_{n} \geq M$. Taking $M \uparrow \infty$ gives

$$
\liminf _{n \rightarrow \infty} a_{n}=\limsup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n}=\infty
$$

Now suppose that $\left(a_{n}\right)_{n=1}^{\infty}$ converges to $-\infty$. Then for every $M>0$ there is an $N_{0} \in \mathbb{N}$ so that for $N \geq N_{0}$ and for all $n \geq N, a_{n} \leq-M$. So $\inf _{n \geq N} a_{n} \leq-M$ and $\sup _{n \geq N} a_{n} \leq-M$. Taking the limit $M \uparrow \infty$ gives

$$
\liminf _{n \rightarrow \infty} a_{n}=\limsup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n}=-\infty
$$

Now suppose $\left(a_{n}\right)_{n=1}^{\infty}$ converges to $a \in \mathbb{R}$. Let $\varepsilon>0$. Then there is an $N_{0} \in \mathbb{N}$ so that for $N \geq N_{0}$ and for $n \geq N,\left|a_{n}-a\right|<\varepsilon$. Thus $\inf _{n \geq N} a_{n} \geq a-\varepsilon$ and $\sup _{n \geq N} a_{n} \leq a+\varepsilon$. Taking the limit $\varepsilon \downarrow 0$ gives

$$
\liminf _{n \rightarrow \infty} a_{n}=\limsup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n}=a .
$$

Conversely, suppose $\liminf _{n \rightarrow \infty} a_{n}=\limsup \operatorname{sum}_{n \rightarrow \infty} a_{n}=\infty$. In particular $\inf _{n \geq N} a_{n}$ diverges to infinity. So for every $M>0$ there is some $N \in \mathbb{N}$ so that for $n \geq N, a_{n} \geq M$. So

$$
\lim _{n \rightarrow \infty} a_{n}=\infty
$$

So

$$
\liminf _{n \rightarrow \infty} a_{n}=\limsup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n}=\infty
$$

Now suppose $\lim \inf _{n \rightarrow \infty} a_{n}=\lim \sup _{n \rightarrow \infty} a_{n}=-\infty$. In particular $\sup _{n \geq N} a_{n}$ diverges to minus infinity. So for every $M>0$ there is some $N \in \mathbb{N}$ so that for $n \geq N, a_{n} \leq-M$. So $\lim _{n \rightarrow \infty} a_{n}=-\infty$. So

$$
\liminf _{n \rightarrow \infty} a_{n}=\limsup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n}=-\infty
$$

Now suppose $\liminf _{n \rightarrow \infty} a_{n}=\limsup \sup _{n \rightarrow \infty} a_{n}=a \in \mathbb{R}$. Let $\varepsilon>0$. Then there is an N_{0} so that for all $N \geq N_{0}$,

$$
a-\varepsilon \leq \inf _{n \geq N} a_{n} \leq \sup _{n \geq N} a_{n} \leq a+\varepsilon
$$

So for all $n \geq N_{0}$,

$$
a-\varepsilon \leq a_{n} \leq a+\varepsilon .
$$

Taking $\varepsilon \downarrow 0$ gives $\lim _{n \rightarrow \infty} a_{n}=a$. So

$$
\liminf _{n \rightarrow \infty} a_{n}=\limsup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n}=a .
$$

