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Abstract

In these notes I review some facts about convex sets. First I treat when convex
combinations of elements are unique. Then I review the Caratheodory theorem. Next I
consider extreme elements and minimal sets that generate the convex set. I finish with
convex isomorphisms. I assume that the concepts of convex sets and convex hulls are
familiar.
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1 Unique convex combinations

Definition 1. Let C' be the convex hull of vq,...,v,,. An element v € C' has a unique
convex combination of elements vy,..., v, when Ay, ..., Ay, o1, ..., e > 0, Z?Zl Wi =
Zle ANi=1land v = \Muyr 4+ ... + AU = v + ... F Uy impies \; = p;, for all
t=1,...,m.

Lemma 2. Let V be a real vector space. Let k € N. Let vi,...,vp41 € V and let C be
the convex hull of v1,...,vkyr1. Then each element of C has a unique convexr combination
of elements of v1, ..., vkr1 if and only if vi — Vg1, ..., Uk — Vgr1 are linearly independent.

Proof. First we prove that when vy — vgy1,...,0r — vra1 are linearly independent, that
each element of C has a unique convex combination of elements vy, ..., vg11.

Let v € C and let v = A\vy 4+ ... + Agp1Vp+1 = w101 + ... + [rpr1Vk+1 be convex
combinations of v. Then v — vgr1 = A1 (v1 — Vga1) + - + M1 (Vkr1 — V1) = pa(vg —
V1) + -+ o+ M1 (Vks1 — Vkt1), SO

A (V1 = Vgt1) + oo+ Ak — vps1) = pa(vr — vgs1) + oo+ e (VF — V1)

It follows from the fact that v1 —vgy1, ..., v — vk are linearly independent, that A\; = p;
foralli=1,... k. Finally, \py1 =1—-XA\—...—=Ap=1—p1 —...— g = fg41. S0 v has
a unique convex combination.
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For the proof in the other direction, suppose v1 — vg11, ...,V — Vg1 are not linearly
independent. We will show, that there is an element in the convex hull that does not have
a unique convex combination.

From the linear dependence of v; —vgy1,. .., v —vr41 follows that there are oy, . .., o,
not all zero, so that ay(vy — vgy1) + ... + ag(vp — vky1) = 0. Let I = {i:a; >0} and

J={i:a; <0}. So
Zaz z_Uk—f—l Z ai(l_vk-‘rl)

i€l ieJ

As at least one a; # 0,4 € {1,...,k}, at least one of ) .., a; or ), ; —a is positive, and
both are non-negative. Let M = max {3 ,.; i, > ey —i} > 0. Let B =M =3 o
and vy =M — ) ;. ; —a;. Note that §,7 >0, and that 3+ .., =7+ > ,c;— = M.
As vg 1 — vy = 0, we have

/B QG y —Qu
M(Ulﬂ—l — Up41) + Z Ml(vi — Ukt1) = M(”kﬂ — Upt1) + Z Wl(vi — Uk+1)-
i€l icJ
Using that & + 3,0, % = 1 + 3, 7% = 1, adding vy1 on both sides gives
. .
%Uk—i—l + Z szi = %Uk—i—l + Z Vzvz
i€l i€J

As I and J are disjoint, and at least one of «; # 0, it follows that this are two different

convex combinations of vy, ..., vxr1 of the same element 8 17 Vk+1 T Zze] Vi O
Lemma 3. Let V' be a vector space, and C the convex hull of vi,...,vy, € V. When
v € C has two different conver combinations of vi,...,vm, then v has infinitely many
convex combinations of vi,...,Um.

Proof. Suppose
m m
v = Z)\ivi = Zﬂwz‘
i=1 i=1
are two different convex combinations of v. So for some ig € {1,...,m}, Ai; # pi,. Let

a € [0,1]. Note that

m

m
v = Z(a/\ + (1 — a)pi)v Zl/z a)vg,
=1

i=1

is also a convex combination of v. When o # g, v4, (1) —vi, () = (1 —a2) (Nig — 1iy) #
0. Hence there are infinitely many convex combinations of v. O

Definition 4. Let C be a convex set. A convex combination

m
v = E )\1"[)@'
i=1

is open when for all : € {1,...,m}, \; > 0.

Definition 5. Let V be a real vector space and let vi,...,v, € V. We define the
open convex set generated by vy, ..., v, to be the set of all open convex combinations of

VlyewoyUm.

Lemma 6. Let V be a real vector space and let C° be the open convex set generated by
V1,...,0m € V. Let C be the convex set generated by vi,...,vm,. Then C° is convexr and

0#C°CC.



Proof. It is obvious that C° is contained in the convex set generated by vi,...,v,. We
have that (1/m)vi + ...+ (1/m)vy, € C°, so C° is not empty.
Let v = > Nvg,w =Y vy jv; € C°, N, p1; > 0 for all 4. Let o € [0,1]. Then

m

av+ (1 —a)w = Z(a)\i + (1 — a)pi)v;.
i=1

Note that > (aX; + (1 — a)p) = 1, and aX; + (1 — a)p; > 0, for all i € {1,...,m}.

Hence av + (1 — a)w € C°. So C° is convex. O

Lemma 7. Let V be a vector space and let C° (resp. C') be the open (resp. closed) convex
set generated by vy, ...,v,m € V. The following statements are equivalent:

(i) There is an element v € C' that does not have a unique convex combination of
Viyeooy Unm-

(i) Every element of v € C° does not have a unique convex combination of vi,..., Uny.
(iii) For every element v € C° there are infinitely many convexr combinations of

Viyerooy Unm-

Proof. Obviously, (iii) = (ii). As C° is not empty (lemma 6), (ii) = (i). The implica-
tion (ii) = (iii) follows from lemma 3. We are only left to prove (i) = (ii). Let v € C

be an element so that
m m
v = Z)\lvl = Zuivi
i=1 i=1

are two different convex combinations of v. Note that

m

0= Z()\Z — ui)vi.

=1

Let w € C° have an open convex combination

m
w = E V;U;.
i=1

Let o = min; v; > 0. As \j — pi; > —1, v + (N — i) > 0, for all 4, and Y ;" | (v; + (N —
pi)) =i vi+ay (N —pi) =14+40=1. So

m
w = Z(Vz + a(Ai — pi))vi.
i=1
is another convex combination of w, because for at least one i € {1,...,m},\; # p;. O

2 Theorem of Carathéodory (1907)

Theorem 8 (Carathéodory). Let V' be a real n-dimensional vector space. Let C' be the
convex hull of a set S. Then each element x is the convex combination of at most n + 1
elements in S.

Proof. Let y € C. Let m be the smallest integer so that there are z1,...,z,, € C and
Aoy A >0, D77 A = 1 so that

m
Y= Z i
i=1



Suppose m > n + 1. As V is n-dimensional, there are scalars ao, ..., ay,, at least one of
them positive, so that
0= Z ai(z; —x1).

Let a; = = > "5 a;. Then > 7" a; = 0. It follows that
m
0= Zaz ;—X1) = a1 + Zazmz Zaimi.
=2 =2 i=1

Let 1 = min;.q,>0 i, and let j € {1,...,m} be such that p = i—j and o > 0. For all
ie{l,...,m}, \y — pa; > 0, and \j — paj = 0. Moreover, we have

m

Z(Ai—uai)—ZA—uaz Z)\ —,uZaz—l—O—l
i#j i=1
It follows that
m
> (i = poi)zi =Y (N — pe)w; = Zx\ T — uzam =y—0=y
i#] i=1

is a convex combination of y with less than m elements, which is in contradiction with
our assumption that m was the minimum number of elements of S needed to represent
y as a convex combination of elements in S. It follows that each element in C' can be
represented with at most n + 1 elements from S. O

3 Minimal sets and extreme elements

Definition 9. Let S be a subset of a vector space, and let C' be the convex space generated
by S. We call S minimal, when for every x € S, C' # co(S\ {z}).

Not every convex set has a minimal generating set.

Example 10. Consider the real numbers R, and let S generated R. First note that S is
infinite, as otherwise r = maxgeg |r| < oo and co(S) C [—r,r] # R. Let z,y,z € S so
that © <y < z. Note that y is a convex combination of x and z, so S\ {y} also generates
R. So S is not minimal.

Definition 11. Let C be convex and =z € C. We call x extreme, when there are no
y,z € C,y# zand a € (0,1) so that z = ay + (1 — a)z.

Lemma 12. Let C' be a convex set generated by a minimal set S. Then S is the set of
all extrema of C.

Proof. For an extremum z € C, there are no y,z € C,y # z and a € (0,1) so that
x=ay+ (1 —a)z. So co(S\{z}) does not contain x. Hence = € S.

Suppose x € S is not extreme. Then there are y,z € C,z # y and a € (0,1) so
that © = ay + (1 — a)z. Then there are elements x1,...,x,, € S so that y, z are convex

combinations
m m

Y= Zﬂzl’@, and 2z = Z’yia:i.
i=1 i=1

Note that we can choose this x; so that at least one of 3; or ~; is positive. So

m

=Y (i + (1 = a)y)a;

i=1



If all z; # x, then z is a convex combination of other elements of S, and so C' = co(S\ {z}),
so S is not minimal. Contradiction. So x is equal to some x;. After relabelling, if necessary,
we may assume x = x1. As y # z, either 51 < 1 or 71 < 1, or both. We already saw that
Br>0o0r~vy >0.S00<af +(1—a)y <1. So

m

(1= (B + (1 —a)m)e = (af; + (1 - a)y)ai.

=2

Note that Y "o (af; + (1 — @)y) =1 — (b1 + (1 — a)y1), so

% abi + (1 —a)y
T=) 1

T (B +(1—a)m) "

is a convex combination of elements from S\z. So C' = co(S\ {z}), so S is not minimal.
Contradiction. It follows that all elements of S are extreme. O

Vice versa, a set of extreme points does not necessarily generate the convex set.

Example 13. Consider
C={(z,y) € R?: 2% + % < 1, when z,y > 0, otherwise z* + y*> < 1}.
Then C' is convex, and the set of extreme points is
E = {(z,y) 2l 4yt =1,2>0,y > 0}.
However C' is not generated by F.

A corollary to lemma 12 is

Corollary 14. A convex set C' has at most one minimal set. When it exist, it is unique,
which allows us to speak about the minimal set.

Proof. If C has a minimal set, then it is the set of extrema, which uniquely determines
the minimal set. O

Lemma 15. When C is a convex set generated by its set E of extrema, then E is the
minimal set.

Proof. Suppose F is not minimal, then there is an x € E so that C' is generated by E\ {z}.
So there are z1,...,zm € B\ {z} and A1,..., Ay, > 0, Y10, X; = 1 so that o = Y1 A,
But then z is not extreme. Contradiction. [

A corollary to lemmas 12 and 15 is

Corollary 16. Let C' be a convez set generated by S C C. Then S is minimal if and only
if S is the set of all extreme points.

However not every element in a convex set C generated by a minimum set S has
necessarily a unique decomposition of elements in S.

Example 17. Take for instance C' = {(as,y) eR?: 22442 < 1}, which has minimal set
S ={(z,y) € R? : 22 9% = 1}. Then

(0,0) = %(_1,0) + %(1,0) and (0,0) = %(0, 14 %(o, 0.

However, if C' is generated by S = {z1,...,2,} and every element in C has a unique
decomposition in terms of elements of S, then S is minimal:



Lemma 18. Let C be a convex set generated by S = {x1,...,xm}. If every element in C
has a unique decomposition in terms of S, then S is a minimal set.

Proof. Let x; € S. Suppose there are y,z € C and o € (0, 1) so that
zj=oy+ (1 - o)z

Then y and z have convex decompositions

m m
y = Zﬁﬁi, and 2= Z'Yixi~
i—1 =1

So
m
zj =Y (afi+ (1 —a)y)w,
i=1
is a convex decomposition of x; in terms of @1, ..., . As the convex decompositions are
unique, 3; = v; = 0 for all ¢ # j, and f; = v; = 1, so y = 2, so z; is extreme. So by
corollary 16 S is a minimal set. O

Lemma 19. When C is generated by a finite set, then C' has a minimal set.

Proof. Let S be a set of minimum cardinality that generates C', then .S is minimal, because
for x € S, S\ {z} has a lower cardinality than S and therefore does not generate C. [

Corollary 20. When C' does not have extreme points, then C is not generated by a finite
set.

4 Convex isomorphisms

Definition 21. Let C7, 5 be convex sets. We call a map f : C7 — C5 a convex homo-
morphism when f(az + (1 — a)y) = af(z) + (1 — a)f(y) for all a € [0, 1].

Lemma 22. When f : C1 — Cs is a bijective convex homomorphism, f~1 is also a convex
homomorphism.

Proof. Let x,y € Cy and « € [0, 1]. There are a,b € C; so that z = f(a),y = f(b). So

fHow + (1= a)y) =fH(af(a) + (1 — ) f(D))

=/ (f(aa+ (1 - a)b))

=aa+ (1 —a)b

=af " (f(a)) + (1 =) fH(f (D))
=af Hz)+ (1 —a)f(y).

So f~! is convex. O
Definition 23. A convex isomorphism is a bijective convex homomorphism.

Remark 24. Note that a convex isomorphism f : C1 — Co maps extreme points to extreme
points. When C is generated by Si, then Cy is generated by f(S1). When S is minimal,
then f(S7) is minimal. When every element in C; has a unique convex decomposition in
terms of S, then every element of Cs has a unique decomposition in terms of S5.

Definition 25. Let C; be a convex subset of a normed vector space V;, 1 = 1,2. A convex
isometrism is a convex isomorphism f : C; — Cy so that for all z,y € Cy,||z — y| =

1f () = F»)Il-



Lemma 26. Let V.W be linear spaces and x1,..., k11 € V,y1,...,yk+1 € W, so that
L1 — Thtls .-, Tk — Tpr1 are linearly independent in V and y1 — Yg+1s- - Yk — Y41 aT€
linearly independent in W. Let C' be the convexr hull of x1,...,xkr1 and D the convex
hull of y1,...,ykr1. Then f: C — D defined by

k+1 k+1
f <Z aﬁi) = Z QiYi
i=1 i=1

1s a well-definined convex isomorphism.

When V' and W are inner product spaces and r1 — Tpi1,...,2Tk — Tkt are orthogonal
in V and y1 —yes1, - Y —Yrs1 are orthogonal in W, and 0 < ||a; —zps]| = 1y — yesall,
for all i, then f is a well-defined convex isometrism.

Proof. By lemma 2 any element in C' has a unique convex decomposition in terms of
ZT1,...,Ts1, SO fis well defined. By construction it is also a convex homomorphism and
it is surjective. Now suppose f(a) = f(b). There are unique convex decompositions

k+1 k+1

a = Z o;x; and b= Zﬁzmz (1)
i=1 i=1

Using that f is a convex homomorphism, and that f(x;) = y; for all 4,

k+1 k+1

fla)=> aiyi=>_ B = f(b).
i=1 i=1

As all elements in D have a unique convex decomposition, «; = (;, for all 7. It follows
that a = 0. So f is injective as well. So f is a convex isomorphism.

Now suppose that V and W are inner product spaces and x1 — k11, ..., T — Tkt are
orthogonal in V' and y1 — Y41, ..., Yk — Yk+1 are orthogonal in W, and 0 < ||x; — xp41]| =
lyi — yk+1]|, for all i. In particular x; — xgy1,..., 2, — TR are linearly independent in
V,and y1 — Ygt1,-- -, Yk — Yks1 are linearly independent in W. So f: V — W is a convex
isomorphism. Let a,b € C, with unique convex decompositions as in eq. (1). Then

k+1 k+1 2
la = bl = > cixi =Y Bias
i=1 i=1
k+1 k+1 2
=D @i — a1 + Tpg1 — Y Bimi
i=1 i=1
k k 2
= > cilwi —wpp1) = > Bilwi — wppa)
i=1 =1
. 2
= (i = Bi)(xi — Tpy1)
i=1
k
= (i = Bi)?||wi — wppa ||*-
i—1
similar,
k
1£(a) = FOI7 = (e = Bi)?lyi — vera |1
i=1

So it follows from ||z; — zk41]| = ||yi — yk+1]|, for all 4, that || f(a) — f(b)|| = ||a —b||. Hence
f is a convex isometrism. [



