Convex sets

Jan van Waaij

info@janvanwaaij.com

September 8, 2021

Abstract

In these notes I review some facts about convex sets. First I treat when convex combinations of elements are unique. Then I review the Caratheodory theorem. Next I consider extreme elements and minimal sets that generate the convex set. I finish with convex isomorphisms. I assume that the concepts of convex sets and convex hulls are familiar.

Contents

1	Unique convex combinations	1
2	Theorem of Carathéodory (1907)	3
3	Minimal sets and extreme elements	4
4	Convex isomorphisms	6

1 Unique convex combinations

Definition 1. Let *C* be the convex hull of v_1, \ldots, v_m . An element $v \in C$ has a unique convex combination of elements v_1, \ldots, v_m when $\lambda_1, \ldots, \lambda_m, \mu_1, \ldots, \mu_k \geq 0, \sum_{i=1}^k \mu_i = \sum_{i=1}^k \lambda_i = 1$ and $v = \lambda_1 v_1 + \ldots + \lambda_m v_m = \mu_1 v_1 + \ldots + \mu_m v_m$ implies $\lambda_i = \mu_i$, for all $i = 1, \ldots, m$.

Lemma 2. Let V be a real vector space. Let $k \in \mathbb{N}$. Let $v_1, \ldots, v_{k+1} \in V$ and let C be the convex hull of v_1, \ldots, v_{k+1} . Then each element of C has a unique convex combination of elements of v_1, \ldots, v_{k+1} if and only if $v_1 - v_{k+1}, \ldots, v_k - v_{k+1}$ are linearly independent.

Proof. First we prove that when $v_1 - v_{k+1}, \ldots, v_k - v_{k+1}$ are linearly independent, that each element of C has a unique convex combination of elements v_1, \ldots, v_{k+1} .

Let $v \in C$ and let $v = \lambda_1 v_1 + \ldots + \lambda_{k+1} v_{k+1} = \mu_1 v_1 + \ldots + \mu_{k+1} v_{k+1}$ be convex combinations of v. Then $v - v_{k+1} = \lambda_1 (v_1 - v_{k+1}) + \ldots + \lambda_{k+1} (v_{k+1} - v_{k+1}) = \mu_1 (v_1 - v_{k+1}) + \ldots + \mu_{k+1} (v_{k+1} - v_{k+1})$, so

 $\lambda_1(v_1 - v_{k+1}) + \ldots + \lambda_k(v_k - v_{k+1}) = \mu_1(v_1 - v_{k+1}) + \ldots + \mu_k(v_k - v_{k+1}).$

It follows from the fact that $v_1 - v_{k+1}, \ldots, v_k - v_{k+1}$ are linearly independent, that $\lambda_i = \mu_i$ for all $i = 1, \ldots, k$. Finally, $\lambda_{k+1} = 1 - \lambda_1 - \ldots - \lambda_k = 1 - \mu_1 - \ldots - \mu_k = \mu_{k+1}$. So v has a unique convex combination.

For the proof in the other direction, suppose $v_1 - v_{k+1}, \ldots, v_k - v_{k+1}$ are not linearly independent. We will show, that there is an element in the convex hull that does not have a unique convex combination.

From the linear dependence of $v_1 - v_{k+1}, \ldots, v_k - v_{k+1}$ follows that there are $\alpha_1, \ldots, \alpha_k$, not all zero, so that $\alpha_1(v_1 - v_{k+1}) + \ldots + \alpha_k(v_k - v_{k+1}) = 0$. Let $I = \{i : \alpha_i > 0\}$ and $J = \{i : \alpha_i \le 0\}$. So

$$\sum_{i \in I} \alpha_i (v_i - v_{k+1}) = \sum_{i \in J} -\alpha_i (v_i - v_{k+1}).$$

As at least one $\alpha_i \neq 0$, $i \in \{1, \ldots, k\}$, at least one of $\sum_{i \in I} \alpha_i$ or $\sum_{i \in J} -\alpha_i$ is positive, and both are non-negative. Let $M = \max\{\sum_{i \in I} \alpha_i, \sum_{i \in J} -\alpha_i\} > 0$. Let $\beta = M - \sum_{i \in I} \alpha_i$ and $\gamma = M - \sum_{i \in J} -\alpha_i$. Note that $\beta, \gamma \geq 0$, and that $\beta + \sum_{i \in I} \alpha_i = \gamma + \sum_{i \in J} -\alpha_i = M$. As $v_{k+1} - v_{k+1} = 0$, we have

$$\frac{\beta}{M}(v_{k+1} - v_{k+1}) + \sum_{i \in I} \frac{\alpha_i}{M}(v_i - v_{k+1}) = \frac{\gamma}{M}(v_{k+1} - v_{k+1}) + \sum_{i \in J} \frac{-\alpha_i}{M}(v_i - v_{k+1}).$$

Using that $\frac{\beta}{M} + \sum_{i \in I} \frac{\alpha_i}{M} = \frac{\gamma}{M} + \sum_{i \in J} \frac{-\alpha_i}{M} = 1$, adding v_{k+1} on both sides gives

$$\frac{\beta}{M}v_{k+1} + \sum_{i \in I} \frac{\alpha_i}{M}v_i = \frac{\gamma}{M}v_{k+1} + \sum_{i \in J} \frac{-\alpha_i}{M}v_i.$$

As I and J are disjoint, and at least one of $\alpha_i \neq 0$, it follows that this are two different convex combinations of v_1, \ldots, v_{k+1} of the same element $\frac{\beta}{M}v_{k+1} + \sum_{i \in I} \frac{\alpha_i}{M}v_i$.

Lemma 3. Let V be a vector space, and C the convex hull of $v_1, \ldots, v_m \in V$. When $v \in C$ has two different convex combinations of v_1, \ldots, v_m , then v has infinitely many convex combinations of v_1, \ldots, v_m .

Proof. Suppose

$$v = \sum_{i=1}^{m} \lambda_i v_i = \sum_{i=1}^{m} \mu_i v_i$$

are two different convex combinations of v. So for some $i_0 \in \{1, \ldots, m\}$, $\lambda_{i_0} \neq \mu_{i_0}$. Let $\alpha \in [0, 1]$. Note that

$$v = \sum_{i=1}^{m} (\alpha \lambda_i + (1-\alpha)\mu_i) v_i =: \sum_{i=1}^{m} \nu_i(\alpha) v_i,$$

is also a convex combination of v. When $\alpha_1 \neq \alpha_2$, $\nu_{i_0}(\alpha_1) - \nu_{i_0}(\alpha_2) = (\alpha_1 - \alpha_2)(\lambda_{i_0} - \mu_{i_0}) \neq 0$. Hence there are infinitely many convex combinations of v.

Definition 4. Let C be a convex set. A convex combination

$$v = \sum_{i=1}^{m} \lambda_i v_i$$

is open when for all $i \in \{1, \ldots, m\}, \lambda_i > 0$.

Definition 5. Let V be a real vector space and let $v_1, \ldots, v_m \in V$. We define the open convex set generated by v_1, \ldots, v_m to be the set of all open convex combinations of v_1, \ldots, v_m .

Lemma 6. Let V be a real vector space and let C° be the open convex set generated by $v_1, \ldots, v_m \in V$. Let C be the convex set generated by v_1, \ldots, v_m . Then C° is convex and $\emptyset \neq C^{\circ} \subseteq C$.

Proof. It is obvious that C° is contained in the convex set generated by v_1, \ldots, v_m . We have that $(1/m)v_1 + \ldots + (1/m)v_m \in C^{\circ}$, so C° is not empty.

Let $v = \sum_{i=1}^{m} \lambda_i v_i, w = \sum_{i=1}^{m} \mu_i v_i \in C^{\circ}, \lambda_i, \mu_i > 0$ for all *i*. Let $\alpha \in [0, 1]$. Then

$$\alpha v + (1 - \alpha)w = \sum_{i=1}^{m} (\alpha \lambda_i + (1 - \alpha)\mu_i)v_i$$

Note that $\sum_{i=1}^{m} (\alpha \lambda_i + (1-\alpha)\mu_i) = 1$, and $\alpha \lambda_i + (1-\alpha)\mu_i > 0$, for all $i \in \{1, \ldots, m\}$. Hence $\alpha v + (1-\alpha)w \in C^\circ$. So C° is convex.

Lemma 7. Let V be a vector space and let C° (resp. C) be the open (resp. closed) convex set generated by $v_1, \ldots, v_m \in V$. The following statements are equivalent:

- (i) There is an element $v \in C$ that does not have a unique convex combination of v_1, \ldots, v_m .
- (ii) Every element of $v \in C^{\circ}$ does not have a unique convex combination of v_1, \ldots, v_m .
- (iii) For every element $v \in C^{\circ}$ there are infinitely many convex combinations of v_1, \ldots, v_m .

Proof. Obviously, (iii) \Longrightarrow (ii). As C° is not empty (lemma 6), (ii) \Longrightarrow (i). The implication (ii) \Longrightarrow (iii) follows from lemma 3. We are only left to prove (i) \Longrightarrow (ii). Let $v \in C$ be an element so that

$$v = \sum_{i=1}^{m} \lambda_i v_i = \sum_{i=1}^{m} \mu_i v_i$$

are two different convex combinations of v. Note that

$$0 = \sum_{i=1}^{m} (\lambda_i - \mu_i) v_i$$

Let $w \in C^{\circ}$ have an open convex combination

$$w = \sum_{i=1}^{m} \nu_i v_i.$$

Let $\alpha = \min_i \nu_i > 0$. As $\lambda_i - \mu_i \ge -1$, $\nu_i + \alpha(\lambda_i - \mu_i) \ge 0$, for all i, and $\sum_{i=1}^m (\nu_i + \alpha(\lambda_i - \mu_i)) = \sum_{i=1}^m \nu_i + \alpha \sum_{i=1}^m (\lambda_i - \mu_i) = 1 + 0 = 1$. So

$$w = \sum_{i=1}^{m} (\nu_i + \alpha(\lambda_i - \mu_i))v_i.$$

is another convex combination of w, because for at least one $i \in \{1, \ldots, m\}, \lambda_i \neq \mu_i$. \Box

2 Theorem of Carathéodory (1907)

Theorem 8 (Carathéodory). Let V be a real n-dimensional vector space. Let C be the convex hull of a set S. Then each element x is the convex combination of at most n + 1 elements in S.

Proof. Let $y \in C$. Let m be the smallest integer so that there are $x_1, \ldots, x_m \in C$ and $\lambda_1, \ldots, \lambda_m > 0, \sum_{i=1}^m \lambda_i = 1$ so that

$$y = \sum_{i=1}^{m} \lambda_i x_i.$$

Suppose m > n + 1. As V is n-dimensional, there are scalars $\alpha_2, \ldots, \alpha_m$, at least one of them positive, so that

$$0 = \sum_{i=2}^{m} \alpha_i (x_i - x_1).$$

Let $\alpha_1 = -\sum_{i=2}^m \alpha_i$. Then $\sum_{i=1}^m \alpha_i = 0$. It follows that

$$0 = \sum_{i=2}^{m} \alpha_i (x_i - x_1) = \alpha_1 x_1 + \sum_{i=2}^{m} \alpha_i x_i = \sum_{i=1}^{m} \alpha_i x_i.$$

Let $\mu = \min_{i:\alpha_i > 0} \frac{\lambda_i}{\alpha_i}$, and let $j \in \{1, \ldots, m\}$ be such that $\mu = \frac{\lambda_j}{\alpha_j}$ and $\alpha_j > 0$. For all $i \in \{1, \ldots, m\}, \lambda_i - \mu \alpha_i \ge 0$, and $\lambda_j - \mu \alpha_j = 0$. Moreover, we have

$$\sum_{i \neq j} (\lambda_i - \mu \alpha_i) = \sum_{i=1}^m (\lambda_i - \mu \alpha_i) = \sum_{i=1}^m \lambda_i - \mu \sum_{i=1}^m \alpha_i = 1 - 0 = 1.$$

It follows that

$$\sum_{i \neq j} (\lambda_i - \mu \alpha_i) x_i = \sum_{i=1}^m (\lambda_i - \mu \alpha_i) x_i = \sum_{i=1}^m \lambda_i x_i - \mu \sum_{i=1}^m \alpha_i x_i = y - 0 = y$$

is a convex combination of y with less than m elements, which is in contradiction with our assumption that m was the minimum number of elements of S needed to represent y as a convex combination of elements in S. It follows that each element in C can be represented with at most n + 1 elements from S.

3 Minimal sets and extreme elements

Definition 9. Let S be a subset of a vector space, and let C be the convex space generated by S. We call S minimal, when for every $x \in S$, $C \neq co(S \setminus \{x\})$.

Not every convex set has a minimal generating set.

Example 10. Consider the real numbers \mathbb{R} , and let S generated \mathbb{R} . First note that S is infinite, as otherwise $r = \max_{x \in S} |x| < \infty$ and $\operatorname{co}(S) \subseteq [-r, r] \neq \mathbb{R}$. Let $x, y, z \in S$ so that x < y < z. Note that y is a convex combination of x and z, so $S \setminus \{y\}$ also generates \mathbb{R} . So S is not minimal.

Definition 11. Let C be convex and $x \in C$. We call x extreme, when there are no $y, z \in C, y \neq z$ and $\alpha \in (0, 1)$ so that $x = \alpha y + (1 - \alpha)z$.

Lemma 12. Let C be a convex set generated by a minimal set S. Then S is the set of all extrema of C.

Proof. For an extremum $x \in C$, there are no $y, z \in C, y \neq z$ and $\alpha \in (0,1)$ so that $x = \alpha y + (1 - \alpha)z$. So $\operatorname{co}(S \setminus \{x\})$ does not contain x. Hence $x \in S$.

Suppose $x \in S$ is not extreme. Then there are $y, z \in C, x \neq y$ and $\alpha \in (0,1)$ so that $x = \alpha y + (1 - \alpha)z$. Then there are elements $x_1, \ldots, x_m \in S$ so that y, z are convex combinations

$$y = \sum_{i=1}^{m} \beta_i x_i$$
, and $z = \sum_{i=1}^{m} \gamma_i x_i$.

Note that we can choose this x_i so that at least one of β_i or γ_i is positive. So

$$x = \sum_{i=1}^{m} (\alpha \beta_i + (1-\alpha)\gamma_i) x_i.$$

If all $x_i \neq x$, then x is a convex combination of other elements of S, and so $C = \operatorname{co}(S \setminus \{x\})$, so S is not minimal. Contradiction. So x is equal to some x_i . After relabelling, if necessary, we may assume $x = x_1$. As $y \neq z$, either $\beta_1 < 1$ or $\gamma_1 < 1$, or both. We already saw that $\beta_1 > 0$ or $\gamma_1 > 0$. So $0 < \alpha\beta_1 + (1 - \alpha)\gamma_1 < 1$. So

$$(1 - (\alpha\beta_1 + (1 - \alpha)\gamma_1))x = \sum_{i=2}^m (\alpha\beta_i + (1 - \alpha)\gamma_i)x_i.$$

Note that $\sum_{i=2}^{m} (\alpha \beta_i + (1-\alpha)\gamma_i) = 1 - (\alpha \beta_1 + (1-\alpha)\gamma_1)$, so

$$x = \sum_{i=2}^{m} \frac{\alpha\beta_i + (1-\alpha)\gamma_i}{1 - (\alpha\beta_1 + (1-\alpha)\gamma_1)} x_i,$$

is a convex combination of elements from $S \setminus x$. So $C = co(S \setminus \{x\})$, so S is not minimal. Contradiction. It follows that all elements of S are extreme.

Vice versa, a set of extreme points does not necessarily generate the convex set.

Example 13. Consider

$$C = \left\{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, \text{ when } x, y \ge 0, \text{ otherwise } x^2 + y^2 < 1 \right\}.$$

Then C is convex, and the set of extreme points is

$$E = \{(x, y) : x^2 + y^2 = 1, x \ge 0, y \ge 0\}.$$

However C is not generated by E.

A corollary to lemma 12 is

Corollary 14. A convex set C has at most one minimal set. When it exist, it is unique, which allows us to speak about the minimal set.

Proof. If C has a minimal set, then it is the set of extrema, which uniquely determines the minimal set. \Box

Lemma 15. When C is a convex set generated by its set E of extrema, then E is the minimal set.

Proof. Suppose E is not minimal, then there is an $x \in E$ so that C is generated by $E \setminus \{x\}$. So there are $x_1, \ldots, x_m \in E \setminus \{x\}$ and $\lambda_1, \ldots, \lambda_m > 0$, $\sum_{i=1}^m \lambda_i = 1$ so that $x = \sum_{i=1}^m \lambda_i x_i$. But then x is not extreme. Contradiction.

A corollary to lemmas 12 and 15 is

Corollary 16. Let C be a convex set generated by $S \subseteq C$. Then S is minimal if and only if S is the set of all extreme points.

However not every element in a convex set C generated by a minimum set S has necessarily a unique decomposition of elements in S.

Example 17. Take for instance $C = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$, which has minimal set $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. Then

$$(0,0) = \frac{1}{2}(-1,0) + \frac{1}{2}(1,0)$$
 and $(0,0) = \frac{1}{2}(0,-1) + \frac{1}{2}(0,1).$

However, if C is generated by $S = \{x_1, \ldots, x_m\}$ and every element in C has a unique decomposition in terms of elements of S, then S is minimal:

Lemma 18. Let C be a convex set generated by $S = \{x_1, \ldots, x_m\}$. If every element in C has a unique decomposition in terms of S, then S is a minimal set.

Proof. Let $x_j \in S$. Suppose there are $y, z \in C$ and $\alpha \in (0, 1)$ so that

$$x_j = \alpha y + (1 - \alpha)z.$$

Then y and z have convex decompositions

$$y = \sum_{i=1}^{m} \beta_i x_i$$
, and $z = \sum_{i=1}^{m} \gamma_i x_i$

So

$$x_j = \sum_{i=1}^m (\alpha \beta_i + (1-\alpha)\gamma_i) x_i,$$

is a convex decomposition of x_j in terms of x_1, \ldots, x_m . As the convex decompositions are unique, $\beta_i = \gamma_i = 0$ for all $i \neq j$, and $\beta_j = \gamma_j = 1$, so y = z, so x_j is extreme. So by corollary 16 S is a minimal set.

Lemma 19. When C is generated by a finite set, then C has a minimal set.

Proof. Let S be a set of minimum cardinality that generates C, then S is minimal, because for $x \in S$, $S \setminus \{x\}$ has a lower cardinality than S and therefore does not generate C.

Corollary 20. When C does not have extreme points, then C is not generated by a finite set.

4 Convex isomorphisms

Definition 21. Let C_1, C_2 be convex sets. We call a map $f : C_1 \to C_2$ a convex homomorphism when $f(\alpha x + (1 - \alpha)y) = \alpha f(x) + (1 - \alpha)f(y)$ for all $\alpha \in [0, 1]$.

Lemma 22. When $f: C_1 \to C_2$ is a bijective convex homomorphism, f^{-1} is also a convex homomorphism.

Proof. Let $x, y \in C_2$ and $\alpha \in [0, 1]$. There are $a, b \in C_1$ so that x = f(a), y = f(b). So

$$f^{-1}(\alpha x + (1 - \alpha)y) = f^{-1}(\alpha f(a) + (1 - \alpha)f(b))$$

= $f^{-1}(f(\alpha a + (1 - \alpha)b))$
= $\alpha a + (1 - \alpha)b$
= $\alpha f^{-1}(f(a)) + (1 - \alpha)f^{-1}(f(b))$
= $\alpha f^{-1}(x) + (1 - \alpha)f^{-1}(y).$

So f^{-1} is convex.

Definition 23. A convex isomorphism is a bijective convex homomorphism.

Remark 24. Note that a convex isomorphism $f: C_1 \to C_2$ maps extreme points to extreme points. When C_1 is generated by S_1 , then C_2 is generated by $f(S_1)$. When S_1 is minimal, then $f(S_1)$ is minimal. When every element in C_1 has a unique convex decomposition in terms of S_1 , then every element of C_2 has a unique decomposition in terms of S_2 .

Definition 25. Let C_i be a convex subset of a normed vector space V_i , i = 1, 2. A convex isometrism is a convex isomorphism $f : C_1 \to C_2$ so that for all $x, y \in C_1$, ||x - y|| = ||f(x) - f(y)||.

Lemma 26. Let V, W be linear spaces and $x_1, \ldots, x_{k+1} \in V, y_1, \ldots, y_{k+1} \in W$, so that $x_1 - x_{k+1}, \ldots, x_k - x_{k+1}$ are linearly independent in V and $y_1 - y_{k+1}, \ldots, y_k - y_{k+1}$ are linearly independent in W. Let C be the convex hull of x_1, \ldots, x_{k+1} and D the convex hull of y_1, \ldots, y_{k+1} . Then $f: C \to D$ defined by

$$f\left(\sum_{i=1}^{k+1} \alpha_i x_i\right) = \sum_{i=1}^{k+1} \alpha_i y_i$$

is a well-definined convex isomorphism.

When V and W are inner product spaces and $x_1 - x_{k+1}, \ldots, x_k - x_{k+1}$ are orthogonal in V and $y_1 - y_{k+1}, \ldots, y_k - y_{k+1}$ are orthogonal in W, and $0 < ||x_i - x_{k+1}|| = ||y_i - y_{k+1}||$, for all i, then f is a well-defined convex isometrism.

Proof. By lemma 2 any element in C has a unique convex decomposition in terms of x_1, \ldots, x_{k+1} , so f is well defined. By construction it is also a convex homomorphism and it is surjective. Now suppose f(a) = f(b). There are unique convex decompositions

$$a = \sum_{i=1}^{k+1} \alpha_i x_i \quad \text{and} \quad b = \sum_{i=1}^{k+1} \beta_i x_i.$$
(1)

Using that f is a convex homomorphism, and that $f(x_i) = y_i$ for all i,

$$f(a) = \sum_{i=1}^{k+1} \alpha_i y_i = \sum_{i=1}^{k+1} \beta_i y_i = f(b).$$

As all elements in D have a unique convex decomposition, $\alpha_i = \beta_i$, for all i. It follows that a = b. So f is injective as well. So f is a convex isomorphism.

Now suppose that V and W are inner product spaces and $x_1 - x_{k+1}, \ldots, x_k - x_{k+1}$ are orthogonal in V and $y_1 - y_{k+1}, \ldots, y_k - y_{k+1}$ are orthogonal in W, and $0 < ||x_i - x_{k+1}|| = ||y_i - y_{k+1}||$, for all *i*. In particular $x_1 - x_{k+1}, \ldots, x_k - x_{k+1}$ are linearly independent in V, and $y_1 - y_{k+1}, \ldots, y_k - y_{k+1}$ are linearly independent in W. So $f: V \to W$ is a convex isomorphism. Let $a, b \in C$, with unique convex decompositions as in eq. (1). Then

$$\|a - b\|^{2} = \left\| \sum_{i=1}^{k+1} \alpha_{i} x_{i} - \sum_{i=1}^{k+1} \beta_{i} x_{i} \right\|^{2}$$

$$= \left\| \sum_{i=1}^{k+1} \alpha_{i} x_{i} - x_{k+1} + x_{k+1} - \sum_{i=1}^{k+1} \beta_{i} x_{i} \right\|^{2}$$

$$= \left\| \sum_{i=1}^{k} \alpha_{i} (x_{i} - x_{k+1}) - \sum_{i=1}^{k} \beta_{i} (x_{i} - x_{k+1}) \right\|^{2}$$

$$= \left\| \sum_{i=1}^{k} (\alpha_{i} - \beta_{i})(x_{i} - x_{k+1}) \right\|^{2}$$

$$= \sum_{i=1}^{k} (\alpha_{i} - \beta_{i})^{2} \|x_{i} - x_{k+1}\|^{2}.$$

similar,

$$||f(a) - f(b)||^2 = \sum_{i=1}^k (\alpha_i - \beta_i)^2 ||y_i - y_{k+1}||^2.$$

So it follows from $||x_i - x_{k+1}|| = ||y_i - y_{k+1}||$, for all *i*, that ||f(a) - f(b)|| = ||a - b||. Hence *f* is a convex isometrism.