Convex sets

Jan van Waaij
info@janvanwaaij.com

September 8, 2021

Abstract

In these notes I review some facts about convex sets. First I treat when convex combinations of elements are unique. Then I review the Caratheodory theorem. Next I consider extreme elements and minimal sets that generate the convex set. I finish with convex isomorphisms. I assume that the concepts of convex sets and convex hulls are familiar.

Contents

1 Unique convex combinations 1
2 Theorem of Carathéodory (1907) 3
3 Minimal sets and extreme elements 4
4 Convex isomorphisms 6

1 Unique convex combinations

Definition 1. Let C be the convex hull of v_{1}, \ldots, v_{m}. An element $v \in C$ has a unique convex combination of elements v_{1}, \ldots, v_{m} when $\lambda_{1}, \ldots, \lambda_{m}, \mu_{1}, \ldots, \mu_{k} \geq 0, \sum_{i=1}^{k} \mu_{i}=$ $\sum_{i=1}^{k} \lambda_{i}=1$ and $v=\lambda_{1} v_{1}+\ldots+\lambda_{m} v_{m}=\mu_{1} v_{1}+\ldots+\mu_{m} v_{m}$ impies $\lambda_{i}=\mu_{i}$, for all $i=1, \ldots, m$.

Lemma 2. Let V be a real vector space. Let $k \in \mathbb{N}$. Let $v_{1}, \ldots, v_{k+1} \in V$ and let C be the convex hull of v_{1}, \ldots, v_{k+1}. Then each element of C has a unique convex combination of elements of v_{1}, \ldots, v_{k+1} if and only if $v_{1}-v_{k+1}, \ldots, v_{k}-v_{k+1}$ are linearly independent.

Proof. First we prove that when $v_{1}-v_{k+1}, \ldots, v_{k}-v_{k+1}$ are linearly independent, that each element of C has a unique convex combination of elements v_{1}, \ldots, v_{k+1}.

Let $v \in C$ and let $v=\lambda_{1} v_{1}+\ldots+\lambda_{k+1} v_{k+1}=\mu_{1} v_{1}+\ldots+\mu_{k+1} v_{k+1}$ be convex combinations of v. Then $v-v_{k+1}=\lambda_{1}\left(v_{1}-v_{k+1}\right)+\ldots+\lambda_{k+1}\left(v_{k+1}-v_{k+1}\right)=\mu_{1}\left(v_{1}-\right.$ $\left.v_{k+1}\right)+\ldots+\mu_{k+1}\left(v_{k+1}-v_{k+1}\right)$, so

$$
\lambda_{1}\left(v_{1}-v_{k+1}\right)+\ldots+\lambda_{k}\left(v_{k}-v_{k+1}\right)=\mu_{1}\left(v_{1}-v_{k+1}\right)+\ldots+\mu_{k}\left(v_{k}-v_{k+1}\right) .
$$

It follows from the fact that $v_{1}-v_{k+1}, \ldots, v_{k}-v_{k+1}$ are linearly independent, that $\lambda_{i}=\mu_{i}$ for all $i=1, \ldots, k$. Finally, $\lambda_{k+1}=1-\lambda_{1}-\ldots-\lambda_{k}=1-\mu_{1}-\ldots-\mu_{k}=\mu_{k+1}$. So v has a unique convex combination.

For the proof in the other direction, suppose $v_{1}-v_{k+1}, \ldots, v_{k}-v_{k+1}$ are not linearly independent. We will show, that there is an element in the convex hull that does not have a unique convex combination.

From the linear dependence of $v_{1}-v_{k+1}, \ldots, v_{k}-v_{k+1}$ follows that there are $\alpha_{1}, \ldots, \alpha_{k}$, not all zero, so that $\alpha_{1}\left(v_{1}-v_{k+1}\right)+\ldots+\alpha_{k}\left(v_{k}-v_{k+1}\right)=0$. Let $I=\left\{i: \alpha_{i}>0\right\}$ and $J=\left\{i: \alpha_{i} \leq 0\right\}$. So

$$
\sum_{i \in I} \alpha_{i}\left(v_{i}-v_{k+1}\right)=\sum_{i \in J}-\alpha_{i}\left(v_{i}-v_{k+1}\right) .
$$

As at least one $\alpha_{i} \neq 0, i \in\{1, \ldots, k\}$, at least one of $\sum_{i \in I} \alpha_{i}$ or $\sum_{i \in J}-\alpha_{i}$ is positive, and both are non-negative. Let $M=\max \left\{\sum_{i \in I} \alpha_{i}, \sum_{i \in J}-\alpha_{i}\right\}>0$. Let $\beta=M-\sum_{i \in I} \alpha_{i}$ and $\gamma=M-\sum_{i \in J}-\alpha_{i}$. Note that $\beta, \gamma \geq 0$, and that $\beta+\sum_{i \in I} \alpha_{i}=\gamma+\sum_{i \in J}-\alpha_{i}=M$. As $v_{k+1}-v_{k+1}=0$, we have

$$
\frac{\beta}{M}\left(v_{k+1}-v_{k+1}\right)+\sum_{i \in I} \frac{\alpha_{i}}{M}\left(v_{i}-v_{k+1}\right)=\frac{\gamma}{M}\left(v_{k+1}-v_{k+1}\right)+\sum_{i \in J} \frac{-\alpha_{i}}{M}\left(v_{i}-v_{k+1}\right) .
$$

Using that $\frac{\beta}{M}+\sum_{i \in I} \frac{\alpha_{i}}{M}=\frac{\gamma}{M}+\sum_{i \in J} \frac{-\alpha_{i}}{M}=1$, adding v_{k+1} on both sides gives

$$
\frac{\beta}{M} v_{k+1}+\sum_{i \in I} \frac{\alpha_{i}}{M} v_{i}=\frac{\gamma}{M} v_{k+1}+\sum_{i \in J} \frac{-\alpha_{i}}{M} v_{i} .
$$

As I and J are disjoint, and at least one of $\alpha_{i} \neq 0$, it follows that this are two different convex combinations of v_{1}, \ldots, v_{k+1} of the same element $\frac{\beta}{M} v_{k+1}+\sum_{i \in I} \frac{\alpha_{i}}{M} v_{i}$.

Lemma 3. Let V be a vector space, and C the convex hull of $v_{1}, \ldots, v_{m} \in V$. When $v \in C$ has two different convex combinations of v_{1}, \ldots, v_{m}, then v has infinitely many convex combinations of v_{1}, \ldots, v_{m}.

Proof. Suppose

$$
v=\sum_{i=1}^{m} \lambda_{i} v_{i}=\sum_{i=1}^{m} \mu_{i} v_{i}
$$

are two different convex combinations of v. So for some $i_{0} \in\{1, \ldots, m\}, \lambda_{i_{0}} \neq \mu_{i_{0}}$. Let $\alpha \in[0,1]$. Note that

$$
v=\sum_{i=1}^{m}\left(\alpha \lambda_{i}+(1-\alpha) \mu_{i}\right) v_{i}=: \sum_{i=1}^{m} \nu_{i}(\alpha) v_{i},
$$

is also a convex combination of v. When $\alpha_{1} \neq \alpha_{2}, \nu_{i_{0}}\left(\alpha_{1}\right)-\nu_{i_{0}}\left(\alpha_{2}\right)=\left(\alpha_{1}-\alpha_{2}\right)\left(\lambda_{i_{0}}-\mu_{i_{0}}\right) \neq$ 0 . Hence there are infinitely many convex combinations of v.

Definition 4. Let C be a convex set. A convex combination

$$
v=\sum_{i=1}^{m} \lambda_{i} v_{i}
$$

is open when for all $i \in\{1, \ldots, m\}, \lambda_{i}>0$.
Definition 5. Let V be a real vector space and let $v_{1}, \ldots, v_{m} \in V$. We define the open convex set generated by v_{1}, \ldots, v_{m} to be the set of all open convex combinations of v_{1}, \ldots, v_{m}.

Lemma 6. Let V be a real vector space and let C° be the open convex set generated by $v_{1}, \ldots, v_{m} \in V$. Let C be the convex set generated by v_{1}, \ldots, v_{m}. Then C° is convex and $\emptyset \neq C^{\circ} \subseteq C$.

Proof. It is obvious that C° is contained in the convex set generated by v_{1}, \ldots, v_{m}. We have that $(1 / m) v_{1}+\ldots+(1 / m) v_{m} \in C^{\circ}$, so C° is not empty.

Let $v=\sum_{i=1}^{m} \lambda_{i} v_{i}, w=\sum_{i=1}^{m} \mu_{i} v_{i} \in C^{\circ}, \lambda_{i}, \mu_{i}>0$ for all i. Let $\alpha \in[0,1]$. Then

$$
\alpha v+(1-\alpha) w=\sum_{i=1}^{m}\left(\alpha \lambda_{i}+(1-\alpha) \mu_{i}\right) v_{i}
$$

Note that $\sum_{i=1}^{m}\left(\alpha \lambda_{i}+(1-\alpha) \mu_{i}\right)=1$, and $\alpha \lambda_{i}+(1-\alpha) \mu_{i}>0$, for all $i \in\{1, \ldots, m\}$. Hence $\alpha v+(1-\alpha) w \in C^{\circ}$. So C° is convex.

Lemma 7. Let V be a vector space and let C° (resp. C) be the open (resp. closed) convex set generated by $v_{1}, \ldots, v_{m} \in V$. The following statements are equivalent:
(i) There is an element $v \in C$ that does not have a unique convex combination of v_{1}, \ldots, v_{m}.
(ii) Every element of $v \in C^{\circ}$ does not have a unique convex combination of v_{1}, \ldots, v_{m}.
(iii) For every element $v \in C^{\circ}$ there are infinitely many convex combinations of v_{1}, \ldots, v_{m}.

Proof. Obviously, (iii) \Longrightarrow (ii). As C° is not empty (lemma 6), (ii) \Longrightarrow (i). The implication (ii) \Longrightarrow (iii) follows from lemma 3 . We are only left to prove (i) \Longrightarrow (ii). Let $v \in C$ be an element so that

$$
v=\sum_{i=1}^{m} \lambda_{i} v_{i}=\sum_{i=1}^{m} \mu_{i} v_{i}
$$

are two different convex combinations of v. Note that

$$
0=\sum_{i=1}^{m}\left(\lambda_{i}-\mu_{i}\right) v_{i}
$$

Let $w \in C^{\circ}$ have an open convex combination

$$
w=\sum_{i=1}^{m} \nu_{i} v_{i}
$$

Let $\alpha=\min _{i} \nu_{i}>0$. As $\lambda_{i}-\mu_{i} \geq-1, \nu_{i}+\alpha\left(\lambda_{i}-\mu_{i}\right) \geq 0$, for all i, and $\sum_{i=1}^{m}\left(\nu_{i}+\alpha\left(\lambda_{i}-\right.\right.$ $\left.\left.\mu_{i}\right)\right)=\sum_{i=1}^{m} \nu_{i}+\alpha \sum_{i=1}^{m}\left(\lambda_{i}-\mu_{i}\right)=1+0=1$. So

$$
w=\sum_{i=1}^{m}\left(\nu_{i}+\alpha\left(\lambda_{i}-\mu_{i}\right)\right) v_{i} .
$$

is another convex combination of w, because for at least one $i \in\{1, \ldots, m\}, \lambda_{i} \neq \mu_{i}$.

2 Theorem of Carathéodory (1907)

Theorem 8 (Carathéodory). Let V be a real n-dimensional vector space. Let C be the convex hull of a set S. Then each element x is the convex combination of at most $n+1$ elements in S.

Proof. Let $y \in C$. Let m be the smallest integer so that there are $x_{1}, \ldots, x_{m} \in C$ and $\lambda_{1}, \ldots, \lambda_{m}>0, \sum_{i=1}^{m} \lambda_{i}=1$ so that

$$
y=\sum_{i=1}^{m} \lambda_{i} x_{i} .
$$

Suppose $m>n+1$. As V is n-dimensional, there are scalars $\alpha_{2}, \ldots, \alpha_{m}$, at least one of them positive, so that

$$
0=\sum_{i=2}^{m} \alpha_{i}\left(x_{i}-x_{1}\right)
$$

Let $\alpha_{1}=-\sum_{i=2}^{m} \alpha_{i}$. Then $\sum_{i=1}^{m} \alpha_{i}=0$. It follows that

$$
0=\sum_{i=2}^{m} \alpha_{i}\left(x_{i}-x_{1}\right)=\alpha_{1} x_{1}+\sum_{i=2}^{m} \alpha_{i} x_{i}=\sum_{i=1}^{m} \alpha_{i} x_{i}
$$

Let $\mu=\min _{i: \alpha_{i}>0} \frac{\lambda_{i}}{\alpha_{i}}$, and let $j \in\{1, \ldots, m\}$ be such that $\mu=\frac{\lambda_{j}}{\alpha_{j}}$ and $\alpha_{j}>0$. For all $i \in\{1, \ldots, m\}, \lambda_{i}-\mu \alpha_{i} \geq 0$, and $\lambda_{j}-\mu \alpha_{j}=0$. Moreover, we have

$$
\sum_{i \neq j}\left(\lambda_{i}-\mu \alpha_{i}\right)=\sum_{i=1}^{m}\left(\lambda_{i}-\mu \alpha_{i}\right)=\sum_{i=1}^{m} \lambda_{i}-\mu \sum_{i=1}^{m} \alpha_{i}=1-0=1
$$

It follows that

$$
\sum_{i \neq j}\left(\lambda_{i}-\mu \alpha_{i}\right) x_{i}=\sum_{i=1}^{m}\left(\lambda_{i}-\mu \alpha_{i}\right) x_{i}=\sum_{i=1}^{m} \lambda_{i} x_{i}-\mu \sum_{i=1}^{m} \alpha_{i} x_{i}=y-0=y
$$

is a convex combination of y with less than m elements, which is in contradiction with our assumption that m was the minimum number of elements of S needed to represent y as a convex combination of elements in S. It follows that each element in C can be represented with at most $n+1$ elements from S.

3 Minimal sets and extreme elements

Definition 9. Let S be a subset of a vector space, and let C be the convex space generated by S. We call S minimal, when for every $x \in S, C \neq \operatorname{co}(S \backslash\{x\})$.

Not every convex set has a minimal generating set.
Example 10. Consider the real numbers \mathbb{R}, and let S generated \mathbb{R}. First note that S is infinite, as otherwise $r=\max _{x \in S}|x|<\infty$ and $\operatorname{co}(S) \subseteq[-r, r] \neq \mathbb{R}$. Let $x, y, z \in S$ so that $x<y<z$. Note that y is a convex combination of x and z, so $S \backslash\{y\}$ also generates \mathbb{R}. So S is not minimal.

Definition 11. Let C be convex and $x \in C$. We call x extreme, when there are no $y, z \in C, y \neq z$ and $\alpha \in(0,1)$ so that $x=\alpha y+(1-\alpha) z$.

Lemma 12. Let C be a convex set generated by a minimal set S. Then S is the set of all extrema of C.

Proof. For an extremum $x \in C$, there are no $y, z \in C, y \neq z$ and $\alpha \in(0,1)$ so that $x=\alpha y+(1-\alpha) z$. So co $(S \backslash\{x\})$ does not contain x. Hence $x \in S$.

Suppose $x \in S$ is not extreme. Then there are $y, z \in C, x \neq y$ and $\alpha \in(0,1)$ so that $x=\alpha y+(1-\alpha) z$. Then there are elements $x_{1}, \ldots, x_{m} \in S$ so that y, z are convex combinations

$$
y=\sum_{i=1}^{m} \beta_{i} x_{i}, \quad \text { and } \quad z=\sum_{i=1}^{m} \gamma_{i} x_{i}
$$

Note that we can choose this x_{i} so that at least one of β_{i} or γ_{i} is positive. So

$$
x=\sum_{i=1}^{m}\left(\alpha \beta_{i}+(1-\alpha) \gamma_{i}\right) x_{i}
$$

If all $x_{i} \neq x$, then x is a convex combination of other elements of S, and so $C=\operatorname{co}(S \backslash\{x\})$, so S is not minimal. Contradiction. So x is equal to some x_{i}. After relabelling, if necessary, we may assume $x=x_{1}$. As $y \neq z$, either $\beta_{1}<1$ or $\gamma_{1}<1$, or both. We already saw that $\beta_{1}>0$ or $\gamma_{1}>0$. So $0<\alpha \beta_{1}+(1-\alpha) \gamma_{1}<1$. So

$$
\left(1-\left(\alpha \beta_{1}+(1-\alpha) \gamma_{1}\right)\right) x=\sum_{i=2}^{m}\left(\alpha \beta_{i}+(1-\alpha) \gamma_{i}\right) x_{i}
$$

Note that $\sum_{i=2}^{m}\left(\alpha \beta_{i}+(1-\alpha) \gamma_{i}\right)=1-\left(\alpha \beta_{1}+(1-\alpha) \gamma_{1}\right)$, so

$$
x=\sum_{i=2}^{m} \frac{\alpha \beta_{i}+(1-\alpha) \gamma_{i}}{1-\left(\alpha \beta_{1}+(1-\alpha) \gamma_{1}\right)} x_{i},
$$

is a convex combination of elements from $S \backslash x$. So $C=\operatorname{co}(S \backslash\{x\})$, so S is not minimal. Contradiction. It follows that all elements of S are extreme.

Vice versa, a set of extreme points does not necessarily generate the convex set.
Example 13. Consider

$$
C=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1, \text { when } x, y \geq 0, \text { otherwise } x^{2}+y^{2}<1\right\} .
$$

Then C is convex, and the set of extreme points is

$$
E=\left\{(x, y): x^{2}+y^{2}=1, x \geq 0, y \geq 0\right\} .
$$

However C is not generated by E.
A corollary to lemma 12 is
Corollary 14. A convex set C has at most one minimal set. When it exist, it is unique, which allows us to speak about the minimal set.

Proof. If C has a minimal set, then it is the set of extrema, which uniquely determines the minimal set.

Lemma 15. When C is a convex set generated by its set E of extrema, then E is the minimal set.

Proof. Suppose E is not minimal, then there is an $x \in E$ so that C is generated by $E \backslash\{x\}$. So there are $x_{1}, \ldots, x_{m} \in E \backslash\{x\}$ and $\lambda_{1}, \ldots, \lambda_{m}>0, \sum_{i=1}^{m} \lambda_{i}=1$ so that $x=\sum_{i=1}^{m} \lambda_{i} x_{i}$. But then x is not extreme. Contradiction.

A corollary to lemmas 12 and 15 is
Corollary 16. Let C be a convex set generated by $S \subseteq C$. Then S is minimal if and only if S is the set of all extreme points.

However not every element in a convex set C generated by a minimum set S has necessarily a unique decomposition of elements in S.

Example 17. Take for instance $C=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$, which has minimal set $S=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$. Then

$$
(0,0)=\frac{1}{2}(-1,0)+\frac{1}{2}(1,0) \quad \text { and } \quad(0,0)=\frac{1}{2}(0,-1)+\frac{1}{2}(0,1)
$$

However, if C is generated by $S=\left\{x_{1}, \ldots, x_{m}\right\}$ and every element in C has a unique decomposition in terms of elements of S, then S is minimal:

Lemma 18. Let C be a convex set generated by $S=\left\{x_{1}, \ldots, x_{m}\right\}$. If every element in C has a unique decomposition in terms of S, then S is a minimal set.

Proof. Let $x_{j} \in S$. Suppose there are $y, z \in C$ and $\alpha \in(0,1)$ so that

$$
x_{j}=\alpha y+(1-\alpha) z
$$

Then y and z have convex decompositions

$$
y=\sum_{i=1}^{m} \beta_{i} x_{i}, \quad \text { and } \quad z=\sum_{i=1}^{m} \gamma_{i} x_{i} .
$$

So

$$
x_{j}=\sum_{i=1}^{m}\left(\alpha \beta_{i}+(1-\alpha) \gamma_{i}\right) x_{i}
$$

is a convex decomposition of x_{j} in terms of x_{1}, \ldots, x_{m}. As the convex decompositions are unique, $\beta_{i}=\gamma_{i}=0$ for all $i \neq j$, and $\beta_{j}=\gamma_{j}=1$, so $y=z$, so x_{j} is extreme. So by corollary $16 S$ is a minimal set.

Lemma 19. When C is generated by a finite set, then C has a minimal set.
Proof. Let S be a set of minimum cardinality that generates C, then S is minimal, because for $x \in S, S \backslash\{x\}$ has a lower cardinality than S and therefore does not generate C.

Corollary 20. When C does not have extreme points, then C is not generated by a finite set.

4 Convex isomorphisms

Definition 21. Let C_{1}, C_{2} be convex sets. We call a map $f: C_{1} \rightarrow C_{2}$ a convex homomorphism when $f(\alpha x+(1-\alpha) y)=\alpha f(x)+(1-\alpha) f(y)$ for all $\alpha \in[0,1]$.

Lemma 22. When $f: C_{1} \rightarrow C_{2}$ is a bijective convex homomorphism, f^{-1} is also a convex homomorphism.

Proof. Let $x, y \in C_{2}$ and $\alpha \in[0,1]$. There are $a, b \in C_{1}$ so that $x=f(a), y=f(b)$. So

$$
\begin{aligned}
f^{-1}(\alpha x+(1-\alpha) y) & =f^{-1}(\alpha f(a)+(1-\alpha) f(b)) \\
& =f^{-1}(f(\alpha a+(1-\alpha) b)) \\
& =\alpha a+(1-\alpha) b \\
& =\alpha f^{-1}(f(a))+(1-\alpha) f^{-1}(f(b)) \\
& =\alpha f^{-1}(x)+(1-\alpha) f^{-1}(y) .
\end{aligned}
$$

So f^{-1} is convex.
Definition 23. A convex isomorphism is a bijective convex homomorphism.
Remark 24. Note that a convex isomorphism $f: C_{1} \rightarrow C_{2}$ maps extreme points to extreme points. When C_{1} is generated by S_{1}, then C_{2} is generated by $f\left(S_{1}\right)$. When S_{1} is minimal, then $f\left(S_{1}\right)$ is minimal. When every element in C_{1} has a unique convex decomposition in terms of S_{1}, then every element of C_{2} has a unique decomposition in terms of S_{2}.

Definition 25. Let C_{i} be a convex subset of a normed vector space $V_{i}, i=1,2$. A convex isometrism is a convex isomorphism $f: C_{1} \rightarrow C_{2}$ so that for all $x, y \in C_{1},\|x-y\|=$ $\|f(x)-f(y)\|$.

Lemma 26. Let V, W be linear spaces and $x_{1}, \ldots, x_{k+1} \in V, y_{1}, \ldots, y_{k+1} \in W$, so that $x_{1}-x_{k+1}, \ldots, x_{k}-x_{k+1}$ are linearly independent in V and $y_{1}-y_{k+1}, \ldots, y_{k}-y_{k+1}$ are linearly independent in W. Let C be the convex hull of x_{1}, \ldots, x_{k+1} and D the convex hull of y_{1}, \ldots, y_{k+1}. Then $f: C \rightarrow D$ defined by

$$
f\left(\sum_{i=1}^{k+1} \alpha_{i} x_{i}\right)=\sum_{i=1}^{k+1} \alpha_{i} y_{i}
$$

is a well-definined convex isomorphism.
When V and W are inner product spaces and $x_{1}-x_{k+1}, \ldots, x_{k}-x_{k+1}$ are orthogonal in V and $y_{1}-y_{k+1}, \ldots, y_{k}-y_{k+1}$ are orthogonal in W, and $0<\left\|x_{i}-x_{k+1}\right\|=\left\|y_{i}-y_{k+1}\right\|$, for all i, then f is a well-defined convex isometrism.

Proof. By lemma 2 any element in C has a unique convex decomposition in terms of x_{1}, \ldots, x_{k+1}, so f is well defined. By construction it is also a convex homomorphism and it is surjective. Now suppose $f(a)=f(b)$. There are unique convex decompositions

$$
\begin{equation*}
a=\sum_{i=1}^{k+1} \alpha_{i} x_{i} \quad \text { and } \quad b=\sum_{i=1}^{k+1} \beta_{i} x_{i} \tag{1}
\end{equation*}
$$

Using that f is a convex homomorphism, and that $f\left(x_{i}\right)=y_{i}$ for all i,

$$
f(a)=\sum_{i=1}^{k+1} \alpha_{i} y_{i}=\sum_{i=1}^{k+1} \beta_{i} y_{i}=f(b)
$$

As all elements in D have a unique convex decomposition, $\alpha_{i}=\beta_{i}$, for all i. It follows that $a=b$. So f is injective as well. So f is a convex isomorphism.

Now suppose that V and W are inner product spaces and $x_{1}-x_{k+1}, \ldots, x_{k}-x_{k+1}$ are orthogonal in V and $y_{1}-y_{k+1}, \ldots, y_{k}-y_{k+1}$ are orthogonal in W, and $0<\left\|x_{i}-x_{k+1}\right\|=$ $\left\|y_{i}-y_{k+1}\right\|$, for all i. In particular $x_{1}-x_{k+1}, \ldots, x_{k}-x_{k+1}$ are linearly independent in V, and $y_{1}-y_{k+1}, \ldots, y_{k}-y_{k+1}$ are linearly independent in W. So $f: V \rightarrow W$ is a convex isomorphism. Let $a, b \in C$, with unique convex decompositions as in eq. (1). Then

$$
\begin{aligned}
\|a-b\|^{2} & =\left\|\sum_{i=1}^{k+1} \alpha_{i} x_{i}-\sum_{i=1}^{k+1} \beta_{i} x_{i}\right\|^{2} \\
& =\left\|\sum_{i=1}^{k+1} \alpha_{i} x_{i}-x_{k+1}+x_{k+1}-\sum_{i=1}^{k+1} \beta_{i} x_{i}\right\|^{2} \\
& =\left\|\sum_{i=1}^{k} \alpha_{i}\left(x_{i}-x_{k+1}\right)-\sum_{i=1}^{k} \beta_{i}\left(x_{i}-x_{k+1}\right)\right\|^{2} \\
& =\left\|\sum_{i=1}^{k}\left(\alpha_{i}-\beta_{i}\right)\left(x_{i}-x_{k+1}\right)\right\|^{2} \\
& =\sum_{i=1}^{k}\left(\alpha_{i}-\beta_{i}\right)^{2}\left\|x_{i}-x_{k+1}\right\|^{2} .
\end{aligned}
$$

similar,

$$
\|f(a)-f(b)\|^{2}=\sum_{i=1}^{k}\left(\alpha_{i}-\beta_{i}\right)^{2}\left\|y_{i}-y_{k+1}\right\|^{2}
$$

So it follows from $\left\|x_{i}-x_{k+1}\right\|=\left\|y_{i}-y_{k+1}\right\|$, for all i, that $\|f(a)-f(b)\|=\|a-b\|$. Hence f is a convex isometrism.

