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Abstract

In these notes I review some facts about convex sets. First I treat when convex
combinations of elements are unique. Then I review the Caratheodory theorem. Next I
consider extreme elements and minimal sets that generate the convex set. I finish with
convex isomorphisms. I assume that the concepts of convex sets and convex hulls are
familiar.
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1 Unique convex combinations

Definition 1. Let C be the convex hull of v1, . . . , vm. An element v ∈ C has a unique
convex combination of elements v1, . . . , vm when λ1, . . . ,λm, µ1, . . . , µk ≥ 0,

!k
i=1 µi =!k

i=1 λi = 1 and v = λ1v1 + . . . + λmvm = µ1v1 + . . . + µmvm impies λi = µi, for all
i = 1, . . . ,m.

Lemma 2. Let V be a real vector space. Let k ∈ N. Let v1, . . . , vk+1 ∈ V and let C be
the convex hull of v1, . . . , vk+1. Then each element of C has a unique convex combination
of elements of v1, . . . , vk+1 if and only if v1−vk+1, . . . , vk−vk+1 are linearly independent.

Proof. First we prove that when v1 − vk+1, . . . , vk − vk+1 are linearly independent, that
each element of C has a unique convex combination of elements v1, . . . , vk+1.

Let v ∈ C and let v = λ1v1 + . . . + λk+1vk+1 = µ1v1 + . . . + µk+1vk+1 be convex
combinations of v. Then v − vk+1 = λ1(v1 − vk+1) + . . . + λk+1(vk+1 − vk+1) = µ1(v1 −
vk+1) + . . .+ µk+1(vk+1 − vk+1), so

λ1(v1 − vk+1) + . . .+ λk(vk − vk+1) = µ1(v1 − vk+1) + . . .+ µk(vk − vk+1).

It follows from the fact that v1−vk+1, . . . , vk−vk+1 are linearly independent, that λi = µi

for all i = 1, . . . , k. Finally, λk+1 = 1−λ1 − . . .−λk = 1−µ1 − . . .−µk = µk+1. So v has
a unique convex combination.
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For the proof in the other direction, suppose v1 − vk+1, . . . , vk − vk+1 are not linearly
independent. We will show, that there is an element in the convex hull that does not have
a unique convex combination.

From the linear dependence of v1−vk+1, . . . , vk−vk+1 follows that there are α1, . . . ,αk,
not all zero, so that α1(v1 − vk+1) + . . . + αk(vk − vk+1) = 0. Let I = {i : αi > 0} and
J = {i : αi ≤ 0}. So "

i∈I
αi(vi − vk+1) =

"

i∈J
−αi(vi − vk+1).

As at least one αi ∕= 0, i ∈ {1, . . . , k}, at least one of
!

i∈I αi or
!

i∈J −αi is positive, and
both are non-negative. Let M = max

#!
i∈I αi,

!
i∈J −αi

$
> 0. Let β = M −

!
i∈I αi

and γ = M −
!

i∈J −αi. Note that β, γ ≥ 0, and that β+
!

i∈I αi = γ+
!

i∈J −αi = M .
As vk+1 − vk+1 = 0, we have

β

M
(vk+1 − vk+1) +

"

i∈I

αi

M
(vi − vk+1) =

γ

M
(vk+1 − vk+1) +

"

i∈J

−αi

M
(vi − vk+1).

Using that β
M +

!
i∈I

αi
M = γ

M +
!

i∈J
−αi
M = 1, adding vk+1 on both sides gives

β

M
vk+1 +

"

i∈I

αi

M
vi =

γ

M
vk+1 +

"

i∈J

−αi

M
vi.

As I and J are disjoint, and at least one of αi ∕= 0, it follows that this are two different
convex combinations of v1, . . . , vk+1 of the same element β

M vk+1 +
!

i∈I
αi
M vi.

Lemma 3. Let V be a vector space, and C the convex hull of v1, . . . , vm ∈ V . When
v ∈ C has two different convex combinations of v1, . . . , vm, then v has infinitely many
convex combinations of v1, . . . , vm.

Proof. Suppose

v =

m"

i=1

λivi =

m"

i=1

µivi

are two different convex combinations of v. So for some i0 ∈ {1, . . . ,m}, λi0 ∕= µi0 . Let
α ∈ [0, 1]. Note that

v =

m"

i=1

(αλi + (1− α)µi)vi =:

m"

i=1

νi(α)vi,

is also a convex combination of v. When α1 ∕= α2, νi0(α1)−νi0(α2) = (α1−α2)(λi0−µi0) ∕=
0. Hence there are infinitely many convex combinations of v.

Definition 4. Let C be a convex set. A convex combination

v =

m"

i=1

λivi

is open when for all i ∈ {1, . . . ,m}, λi > 0.

Definition 5. Let V be a real vector space and let v1, . . . , vm ∈ V . We define the
open convex set generated by v1, . . . , vm to be the set of all open convex combinations of
v1, . . . , vm.

Lemma 6. Let V be a real vector space and let C◦ be the open convex set generated by
v1, . . . , vm ∈ V . Let C be the convex set generated by v1, . . . , vm. Then C◦ is convex and
∅ ∕= C◦ ⊆ C.
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Proof. It is obvious that C◦ is contained in the convex set generated by v1, . . . , vm. We
have that (1/m)v1 + . . .+ (1/m)vm ∈ C◦, so C◦ is not empty.

Let v =
!m

i=1 λivi, w =
!m

i=1 µivi ∈ C◦, λi, µi > 0 for all i. Let α ∈ [0, 1]. Then

αv + (1− α)w =

m"

i=1

(αλi + (1− α)µi)vi.

Note that
!m

i=1(αλi + (1 − α)µi) = 1, and αλi + (1 − α)µi > 0, for all i ∈ {1, . . . ,m}.
Hence αv + (1− α)w ∈ C◦. So C◦ is convex.

Lemma 7. Let V be a vector space and let C◦ (resp. C) be the open (resp. closed) convex
set generated by v1, . . . , vm ∈ V . The following statements are equivalent:

(i) There is an element v ∈ C that does not have a unique convex combination of
v1, . . . , vm.

(ii) Every element of v ∈ C◦ does not have a unique convex combination of v1, . . . , vm.

(iii) For every element v ∈ C◦ there are infinitely many convex combinations of
v1, . . . , vm.

Proof. Obviously, (iii) =⇒ (ii). As C◦ is not empty (lemma 6), (ii) =⇒ (i). The implica-
tion (ii) =⇒ (iii) follows from lemma 3. We are only left to prove (i) =⇒ (ii). Let v ∈ C
be an element so that

v =

m"

i=1

λivi =

m"

i=1

µivi

are two different convex combinations of v. Note that

0 =

m"

i=1

(λi − µi)vi.

Let w ∈ C◦ have an open convex combination

w =

m"

i=1

νivi.

Let α = mini νi > 0. As λi −µi ≥ −1, νi +α(λi −µi) ≥ 0, for all i, and
!m

i=1(νi +α(λi −
µi)) =

!m
i=1 νi + α

!m
i=1(λi − µi) = 1 + 0 = 1. So

w =

m"

i=1

(νi + α(λi − µi))vi.

is another convex combination of w, because for at least one i ∈ {1, . . . ,m} ,λi ∕= µi.

2 Theorem of Carathéodory (1907)

Theorem 8 (Carathéodory). Let V be a real n-dimensional vector space. Let C be the
convex hull of a set S. Then each element x is the convex combination of at most n + 1
elements in S.

Proof. Let y ∈ C. Let m be the smallest integer so that there are x1, . . . , xm ∈ C and
λ1, . . . ,λm > 0,

!m
i=1 λi = 1 so that

y =

m"

i=1

λixi.
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Suppose m > n + 1. As V is n-dimensional, there are scalars α2, . . . ,αm, at least one of
them positive, so that

0 =

m"

i=2

αi(xi − x1).

Let α1 = −
!m

i=2 αi. Then
!m

i=1 αi = 0. It follows that

0 =

m"

i=2

αi(xi − x1) = α1x1 +

m"

i=2

αixi =

m"

i=1

αixi.

Let µ = mini:αi>0
λi
αi
, and let j ∈ {1, . . . ,m} be such that µ =

λj

αj
and αj > 0. For all

i ∈ {1, . . . ,m}, λi − µαi ≥ 0, and λj − µαj = 0. Moreover, we have

"

i ∕=j

(λi − µαi) =

m"

i=1

(λi − µαi) =

m"

i=1

λi − µ

m"

i=1

αi = 1− 0 = 1.

It follows that

"

i ∕=j

(λi − µαi)xi =

m"

i=1

(λi − µαi)xi =

m"

i=1

λixi − µ

m"

i=1

αixi = y − 0 = y

is a convex combination of y with less than m elements, which is in contradiction with
our assumption that m was the minimum number of elements of S needed to represent
y as a convex combination of elements in S. It follows that each element in C can be
represented with at most n+ 1 elements from S.

3 Minimal sets and extreme elements

Definition 9. Let S be a subset of a vector space, and let C be the convex space generated
by S. We call S minimal, when for every x ∈ S, C ∕= co(S\ {x}).

Not every convex set has a minimal generating set.

Example 10. Consider the real numbers R, and let S generated R. First note that S is
infinite, as otherwise r = maxx∈S |x| < ∞ and co(S) ⊆ [−r, r] ∕= R. Let x, y, z ∈ S so
that x < y < z. Note that y is a convex combination of x and z, so S\ {y} also generates
R. So S is not minimal.

Definition 11. Let C be convex and x ∈ C. We call x extreme, when there are no
y, z ∈ C, y ∕= z and α ∈ (0, 1) so that x = αy + (1− α)z.

Lemma 12. Let C be a convex set generated by a minimal set S. Then S is the set of
all extrema of C.

Proof. For an extremum x ∈ C, there are no y, z ∈ C, y ∕= z and α ∈ (0, 1) so that
x = αy + (1− α)z. So co(S\ {x}) does not contain x. Hence x ∈ S.

Suppose x ∈ S is not extreme. Then there are y, z ∈ C, x ∕= y and α ∈ (0, 1) so
that x = αy + (1 − α)z. Then there are elements x1, . . . , xm ∈ S so that y, z are convex
combinations

y =

m"

i=1

βixi, and z =

m"

i=1

γixi.

Note that we can choose this xi so that at least one of βi or γi is positive. So

x =

m"

i=1

(αβi + (1− α)γi)xi.
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If all xi ∕= x, then x is a convex combination of other elements of S, and so C = co(S\ {x}),
so S is not minimal. Contradiction. So x is equal to some xi. After relabelling, if necessary,
we may assume x = x1. As y ∕= z, either β1 < 1 or γ1 < 1, or both. We already saw that
β1 > 0 or γ1 > 0. So 0 < αβ1 + (1− α)γ1 < 1. So

(1− (αβ1 + (1− α)γ1))x =

m"

i=2

(αβi + (1− α)γi)xi.

Note that
!m

i=2(αβi + (1− α)γi) = 1− (αβ1 + (1− α)γ1), so

x =

m"

i=2

αβi + (1− α)γi
1− (αβ1 + (1− α)γ1)

xi,

is a convex combination of elements from S\x. So C = co(S\ {x}), so S is not minimal.
Contradiction. It follows that all elements of S are extreme.

Vice versa, a set of extreme points does not necessarily generate the convex set.

Example 13. Consider

C =
#
(x, y) ∈ R2 : x2 + y2 ≤ 1, when x, y ≥ 0, otherwise x2 + y2 < 1

$
.

Then C is convex, and the set of extreme points is

E =
#
(x, y) : x2 + y2 = 1, x ≥ 0, y ≥ 0

$
.

However C is not generated by E.

A corollary to lemma 12 is

Corollary 14. A convex set C has at most one minimal set. When it exist, it is unique,
which allows us to speak about the minimal set.

Proof. If C has a minimal set, then it is the set of extrema, which uniquely determines
the minimal set.

Lemma 15. When C is a convex set generated by its set E of extrema, then E is the
minimal set.

Proof. Suppose E is not minimal, then there is an x ∈ E so that C is generated by E\ {x}.
So there are x1, . . . , xm ∈ E\ {x} and λ1, . . . ,λm > 0,

!m
i=1 λi = 1 so that x =

!m
i=1 λixi.

But then x is not extreme. Contradiction.

A corollary to lemmas 12 and 15 is

Corollary 16. Let C be a convex set generated by S ⊆ C. Then S is minimal if and only
if S is the set of all extreme points.

However not every element in a convex set C generated by a minimum set S has
necessarily a unique decomposition of elements in S.

Example 17. Take for instance C =
#
(x, y) ∈ R2 : x2 + y2 ≤ 1

$
, which has minimal set

S =
#
(x, y) ∈ R2 : x2 + y2 = 1

$
. Then

(0, 0) =
1

2
(−1, 0) +

1

2
(1, 0) and (0, 0) =

1

2
(0,−1) +

1

2
(0, 1).

However, if C is generated by S = {x1, . . . , xm} and every element in C has a unique
decomposition in terms of elements of S, then S is minimal:
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Lemma 18. Let C be a convex set generated by S = {x1, . . . , xm}. If every element in C
has a unique decomposition in terms of S, then S is a minimal set.

Proof. Let xj ∈ S. Suppose there are y, z ∈ C and α ∈ (0, 1) so that

xj = αy + (1− α)z.

Then y and z have convex decompositions

y =

m"

i=1

βixi, and z =

m"

i=1

γixi.

So

xj =

m"

i=1

(αβi + (1− α)γi)xi,

is a convex decomposition of xj in terms of x1, . . . , xm. As the convex decompositions are
unique, βi = γi = 0 for all i ∕= j, and βj = γj = 1, so y = z, so xj is extreme. So by
corollary 16 S is a minimal set.

Lemma 19. When C is generated by a finite set, then C has a minimal set.

Proof. Let S be a set of minimum cardinality that generates C, then S is minimal, because
for x ∈ S, S\ {x} has a lower cardinality than S and therefore does not generate C.

Corollary 20. When C does not have extreme points, then C is not generated by a finite
set.

4 Convex isomorphisms

Definition 21. Let C1, C2 be convex sets. We call a map f : C1 → C2 a convex homo-
morphism when f(αx+ (1− α)y) = αf(x) + (1− α)f(y) for all α ∈ [0, 1].

Lemma 22. When f : C1 → C2 is a bijective convex homomorphism, f−1 is also a convex
homomorphism.

Proof. Let x, y ∈ C2 and α ∈ [0, 1]. There are a, b ∈ C1 so that x = f(a), y = f(b). So

f−1(αx+ (1− α)y) =f−1(αf(a) + (1− α)f(b))

=f−1(f(αa+ (1− α)b))

=αa+ (1− α)b

=αf−1(f(a)) + (1− α)f−1(f(b))

=αf−1(x) + (1− α)f−1(y).

So f−1 is convex.

Definition 23. A convex isomorphism is a bijective convex homomorphism.

Remark 24. Note that a convex isomorphism f : C1 → C2 maps extreme points to extreme
points. When C1 is generated by S1, then C2 is generated by f(S1). When S1 is minimal,
then f(S1) is minimal. When every element in C1 has a unique convex decomposition in
terms of S1, then every element of C2 has a unique decomposition in terms of S2.

Definition 25. Let Ci be a convex subset of a normed vector space Vi, i = 1, 2. A convex
isometrism is a convex isomorphism f : C1 → C2 so that for all x, y ∈ C1, ‖x − y‖ =
‖f(x)− f(y)‖.
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Lemma 26. Let V,W be linear spaces and x1, . . . , xk+1 ∈ V, y1, . . . , yk+1 ∈ W , so that
x1 − xk+1, . . . , xk − xk+1 are linearly independent in V and y1 − yk+1, . . . , yk − yk+1 are
linearly independent in W . Let C be the convex hull of x1, . . . , xk+1 and D the convex
hull of y1, . . . , yk+1. Then f : C → D defined by

f

%
k+1"

i=1

αixi

&
=

k+1"

i=1

αiyi

is a well-definined convex isomorphism.
When V and W are inner product spaces and x1 − xk+1, . . . , xk − xk+1 are orthogonal

in V and y1−yk+1, . . . , yk−yk+1 are orthogonal in W , and 0 < ‖xi−xk+1‖ = ‖yi−yk+1‖,
for all i, then f is a well-defined convex isometrism.

Proof. By lemma 2 any element in C has a unique convex decomposition in terms of
x1, . . . , xk+1, so f is well defined. By construction it is also a convex homomorphism and
it is surjective. Now suppose f(a) = f(b). There are unique convex decompositions

a =

k+1"

i=1

αixi and b =

k+1"

i=1

βixi. (1)

Using that f is a convex homomorphism, and that f(xi) = yi for all i,

f(a) =

k+1"

i=1

αiyi =

k+1"

i=1

βiyi = f(b).

As all elements in D have a unique convex decomposition, αi = βi, for all i. It follows
that a = b. So f is injective as well. So f is a convex isomorphism.

Now suppose that V and W are inner product spaces and x1−xk+1, . . . , xk−xk+1 are
orthogonal in V and y1− yk+1, . . . , yk − yk+1 are orthogonal in W , and 0 < ‖xi−xk+1‖ =
‖yi − yk+1‖, for all i. In particular x1 − xk+1, . . . , xk − xk+1 are linearly independent in
V , and y1− yk+1, . . . , yk − yk+1 are linearly independent in W . So f : V → W is a convex
isomorphism. Let a, b ∈ C, with unique convex decompositions as in eq. (1). Then

‖a− b‖2 =

'''''

k+1"

i=1

αixi −
k+1"

i=1

βixi

'''''

2

=

'''''

k+1"

i=1

αixi − xk+1 + xk+1 −
k+1"

i=1

βixi

'''''

2

=

'''''

k"

i=1

αi(xi − xk+1)−
k"

i=1

βi(xi − xk+1)

'''''

2

=

'''''

k"

i=1

(αi − βi)(xi − xk+1)

'''''

2

=

k"

i=1

(αi − βi)
2‖xi − xk+1‖2.

similar,

‖f(a)− f(b)‖2 =
k"

i=1

(αi − βi)
2‖yi − yk+1‖2.

So it follows from ‖xi−xk+1‖ = ‖yi−yk+1‖, for all i, that ‖f(a)−f(b)‖ = ‖a− b‖. Hence
f is a convex isometrism.
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